Whakaoti mō F
F=\frac{j\left(w+M\right)}{w}
j\neq 0\text{ and }w\neq 0
Whakaoti mō M
M=\frac{w\left(F-j\right)}{j}
j\neq 0\text{ and }w\neq 0
Tohaina
Kua tāruatia ki te papatopenga
wF=j\left(M+w\right)
Me whakarea ngā taha e rua o te whārite ki te jw, arā, te tauraro pātahi he tino iti rawa te kitea o j,w.
wF=jM+jw
Whakamahia te āhuatanga tohatoha hei whakarea te j ki te M+w.
wF=jw+Mj
He hanga arowhānui tō te whārite.
\frac{wF}{w}=\frac{j\left(w+M\right)}{w}
Whakawehea ngā taha e rua ki te w.
F=\frac{j\left(w+M\right)}{w}
Mā te whakawehe ki te w ka wetekia te whakareanga ki te w.
wF=j\left(M+w\right)
Me whakarea ngā taha e rua o te whārite ki te jw, arā, te tauraro pātahi he tino iti rawa te kitea o j,w.
wF=jM+jw
Whakamahia te āhuatanga tohatoha hei whakarea te j ki te M+w.
jM+jw=wF
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
jM=wF-jw
Tangohia te jw mai i ngā taha e rua.
jM=Fw-jw
He hanga arowhānui tō te whārite.
\frac{jM}{j}=\frac{w\left(F-j\right)}{j}
Whakawehea ngā taha e rua ki te j.
M=\frac{w\left(F-j\right)}{j}
Mā te whakawehe ki te j ka wetekia te whakareanga ki te j.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}