Aromātai
\frac{1}{A}
Whakaroha
\frac{1}{A}
Tohaina
Kua tāruatia ki te papatopenga
\frac{A-1}{2A}\left(\frac{A+3}{A+1}-\frac{A^{2}-5}{\left(A-1\right)\left(A+1\right)}\right)
Tauwehea te A^{2}-1.
\frac{A-1}{2A}\left(\frac{\left(A+3\right)\left(A-1\right)}{\left(A-1\right)\left(A+1\right)}-\frac{A^{2}-5}{\left(A-1\right)\left(A+1\right)}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o A+1 me \left(A-1\right)\left(A+1\right) ko \left(A-1\right)\left(A+1\right). Whakareatia \frac{A+3}{A+1} ki te \frac{A-1}{A-1}.
\frac{A-1}{2A}\times \frac{\left(A+3\right)\left(A-1\right)-\left(A^{2}-5\right)}{\left(A-1\right)\left(A+1\right)}
Tā te mea he rite te tauraro o \frac{\left(A+3\right)\left(A-1\right)}{\left(A-1\right)\left(A+1\right)} me \frac{A^{2}-5}{\left(A-1\right)\left(A+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{A-1}{2A}\times \frac{A^{2}-A+3A-3-A^{2}+5}{\left(A-1\right)\left(A+1\right)}
Mahia ngā whakarea i roto o \left(A+3\right)\left(A-1\right)-\left(A^{2}-5\right).
\frac{A-1}{2A}\times \frac{2A+2}{\left(A-1\right)\left(A+1\right)}
Whakakotahitia ngā kupu rite i A^{2}-A+3A-3-A^{2}+5.
\frac{A-1}{2A}\times \frac{2\left(A+1\right)}{\left(A-1\right)\left(A+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2A+2}{\left(A-1\right)\left(A+1\right)}.
\frac{A-1}{2A}\times \frac{2}{A-1}
Me whakakore tahi te A+1 i te taurunga me te tauraro.
\frac{\left(A-1\right)\times 2}{2A\left(A-1\right)}
Me whakarea te \frac{A-1}{2A} ki te \frac{2}{A-1} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{A}
Me whakakore tahi te 2\left(A-1\right) i te taurunga me te tauraro.
\frac{A-1}{2A}\left(\frac{A+3}{A+1}-\frac{A^{2}-5}{\left(A-1\right)\left(A+1\right)}\right)
Tauwehea te A^{2}-1.
\frac{A-1}{2A}\left(\frac{\left(A+3\right)\left(A-1\right)}{\left(A-1\right)\left(A+1\right)}-\frac{A^{2}-5}{\left(A-1\right)\left(A+1\right)}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o A+1 me \left(A-1\right)\left(A+1\right) ko \left(A-1\right)\left(A+1\right). Whakareatia \frac{A+3}{A+1} ki te \frac{A-1}{A-1}.
\frac{A-1}{2A}\times \frac{\left(A+3\right)\left(A-1\right)-\left(A^{2}-5\right)}{\left(A-1\right)\left(A+1\right)}
Tā te mea he rite te tauraro o \frac{\left(A+3\right)\left(A-1\right)}{\left(A-1\right)\left(A+1\right)} me \frac{A^{2}-5}{\left(A-1\right)\left(A+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{A-1}{2A}\times \frac{A^{2}-A+3A-3-A^{2}+5}{\left(A-1\right)\left(A+1\right)}
Mahia ngā whakarea i roto o \left(A+3\right)\left(A-1\right)-\left(A^{2}-5\right).
\frac{A-1}{2A}\times \frac{2A+2}{\left(A-1\right)\left(A+1\right)}
Whakakotahitia ngā kupu rite i A^{2}-A+3A-3-A^{2}+5.
\frac{A-1}{2A}\times \frac{2\left(A+1\right)}{\left(A-1\right)\left(A+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2A+2}{\left(A-1\right)\left(A+1\right)}.
\frac{A-1}{2A}\times \frac{2}{A-1}
Me whakakore tahi te A+1 i te taurunga me te tauraro.
\frac{\left(A-1\right)\times 2}{2A\left(A-1\right)}
Me whakarea te \frac{A-1}{2A} ki te \frac{2}{A-1} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{A}
Me whakakore tahi te 2\left(A-1\right) i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}