Whakaoti mō A
A=\frac{2738}{n^{2}}
n\neq 0
Whakaoti mō n (complex solution)
n=-37\sqrt{2}A^{-\frac{1}{2}}
n=37\sqrt{2}A^{-\frac{1}{2}}\text{, }A\neq 0
Whakaoti mō n
n=37\sqrt{\frac{2}{A}}
n=-37\sqrt{\frac{2}{A}}\text{, }A>0
Tohaina
Kua tāruatia ki te papatopenga
An^{2}=2\left(11^{2}-107^{2}\right)+2\times 96^{2}+2\times 59^{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
An^{2}=2\left(121-107^{2}\right)+2\times 96^{2}+2\times 59^{2}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
An^{2}=2\left(121-11449\right)+2\times 96^{2}+2\times 59^{2}
Tātaihia te 107 mā te pū o 2, kia riro ko 11449.
An^{2}=2\left(-11328\right)+2\times 96^{2}+2\times 59^{2}
Tangohia te 11449 i te 121, ka -11328.
An^{2}=-22656+2\times 96^{2}+2\times 59^{2}
Whakareatia te 2 ki te -11328, ka -22656.
An^{2}=-22656+2\times 9216+2\times 59^{2}
Tātaihia te 96 mā te pū o 2, kia riro ko 9216.
An^{2}=-22656+18432+2\times 59^{2}
Whakareatia te 2 ki te 9216, ka 18432.
An^{2}=-4224+2\times 59^{2}
Tāpirihia te -22656 ki te 18432, ka -4224.
An^{2}=-4224+2\times 3481
Tātaihia te 59 mā te pū o 2, kia riro ko 3481.
An^{2}=-4224+6962
Whakareatia te 2 ki te 3481, ka 6962.
An^{2}=2738
Tāpirihia te -4224 ki te 6962, ka 2738.
n^{2}A=2738
He hanga arowhānui tō te whārite.
\frac{n^{2}A}{n^{2}}=\frac{2738}{n^{2}}
Whakawehea ngā taha e rua ki te n^{2}.
A=\frac{2738}{n^{2}}
Mā te whakawehe ki te n^{2} ka wetekia te whakareanga ki te n^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}