Whakaoti mō n
n = \frac{299}{3} = 99\frac{2}{3} \approx 99.666666667
Tohaina
Kua tāruatia ki te papatopenga
99\left(3n-1\right)\left(3n+1\right)=100\left(9n^{2}-9n+2\right)
Tē taea kia ōrite te tāupe n ki tētahi o ngā uara -\frac{1}{3},\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 100\left(3n-1\right)\left(3n+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 100,9n^{2}-1.
\left(297n-99\right)\left(3n+1\right)=100\left(9n^{2}-9n+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 99 ki te 3n-1.
891n^{2}-99=100\left(9n^{2}-9n+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 297n-99 ki te 3n+1 ka whakakotahi i ngā kupu rite.
891n^{2}-99=900n^{2}-900n+200
Whakamahia te āhuatanga tohatoha hei whakarea te 100 ki te 9n^{2}-9n+2.
891n^{2}-99-900n^{2}=-900n+200
Tangohia te 900n^{2} mai i ngā taha e rua.
-9n^{2}-99=-900n+200
Pahekotia te 891n^{2} me -900n^{2}, ka -9n^{2}.
-9n^{2}-99+900n=200
Me tāpiri te 900n ki ngā taha e rua.
-9n^{2}-99+900n-200=0
Tangohia te 200 mai i ngā taha e rua.
-9n^{2}-299+900n=0
Tangohia te 200 i te -99, ka -299.
-9n^{2}+900n-299=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-900±\sqrt{900^{2}-4\left(-9\right)\left(-299\right)}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, 900 mō b, me -299 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-900±\sqrt{810000-4\left(-9\right)\left(-299\right)}}{2\left(-9\right)}
Pūrua 900.
n=\frac{-900±\sqrt{810000+36\left(-299\right)}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
n=\frac{-900±\sqrt{810000-10764}}{2\left(-9\right)}
Whakareatia 36 ki te -299.
n=\frac{-900±\sqrt{799236}}{2\left(-9\right)}
Tāpiri 810000 ki te -10764.
n=\frac{-900±894}{2\left(-9\right)}
Tuhia te pūtakerua o te 799236.
n=\frac{-900±894}{-18}
Whakareatia 2 ki te -9.
n=-\frac{6}{-18}
Nā, me whakaoti te whārite n=\frac{-900±894}{-18} ina he tāpiri te ±. Tāpiri -900 ki te 894.
n=\frac{1}{3}
Whakahekea te hautanga \frac{-6}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
n=-\frac{1794}{-18}
Nā, me whakaoti te whārite n=\frac{-900±894}{-18} ina he tango te ±. Tango 894 mai i -900.
n=\frac{299}{3}
Whakahekea te hautanga \frac{-1794}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
n=\frac{1}{3} n=\frac{299}{3}
Kua oti te whārite te whakatau.
n=\frac{299}{3}
Tē taea kia ōrite te tāupe n ki \frac{1}{3}.
99\left(3n-1\right)\left(3n+1\right)=100\left(9n^{2}-9n+2\right)
Tē taea kia ōrite te tāupe n ki tētahi o ngā uara -\frac{1}{3},\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 100\left(3n-1\right)\left(3n+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 100,9n^{2}-1.
\left(297n-99\right)\left(3n+1\right)=100\left(9n^{2}-9n+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 99 ki te 3n-1.
891n^{2}-99=100\left(9n^{2}-9n+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 297n-99 ki te 3n+1 ka whakakotahi i ngā kupu rite.
891n^{2}-99=900n^{2}-900n+200
Whakamahia te āhuatanga tohatoha hei whakarea te 100 ki te 9n^{2}-9n+2.
891n^{2}-99-900n^{2}=-900n+200
Tangohia te 900n^{2} mai i ngā taha e rua.
-9n^{2}-99=-900n+200
Pahekotia te 891n^{2} me -900n^{2}, ka -9n^{2}.
-9n^{2}-99+900n=200
Me tāpiri te 900n ki ngā taha e rua.
-9n^{2}+900n=200+99
Me tāpiri te 99 ki ngā taha e rua.
-9n^{2}+900n=299
Tāpirihia te 200 ki te 99, ka 299.
\frac{-9n^{2}+900n}{-9}=\frac{299}{-9}
Whakawehea ngā taha e rua ki te -9.
n^{2}+\frac{900}{-9}n=\frac{299}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
n^{2}-100n=\frac{299}{-9}
Whakawehe 900 ki te -9.
n^{2}-100n=-\frac{299}{9}
Whakawehe 299 ki te -9.
n^{2}-100n+\left(-50\right)^{2}=-\frac{299}{9}+\left(-50\right)^{2}
Whakawehea te -100, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -50. Nā, tāpiria te pūrua o te -50 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-100n+2500=-\frac{299}{9}+2500
Pūrua -50.
n^{2}-100n+2500=\frac{22201}{9}
Tāpiri -\frac{299}{9} ki te 2500.
\left(n-50\right)^{2}=\frac{22201}{9}
Tauwehea n^{2}-100n+2500. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-50\right)^{2}}=\sqrt{\frac{22201}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-50=\frac{149}{3} n-50=-\frac{149}{3}
Whakarūnātia.
n=\frac{299}{3} n=\frac{1}{3}
Me tāpiri 50 ki ngā taha e rua o te whārite.
n=\frac{299}{3}
Tē taea kia ōrite te tāupe n ki \frac{1}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}