Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{9yv}{\left(y+v\right)\left(y-v\right)}+\frac{y-v}{y+v}
Tauwehea te y^{2}-v^{2}.
\frac{9yv}{\left(y+v\right)\left(y-v\right)}+\frac{\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(y+v\right)\left(y-v\right) me y+v ko \left(y+v\right)\left(y-v\right). Whakareatia \frac{y-v}{y+v} ki te \frac{y-v}{y-v}.
\frac{9yv+\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}
Tā te mea he rite te tauraro o \frac{9yv}{\left(y+v\right)\left(y-v\right)} me \frac{\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9yv+y^{2}-yv-yv+v^{2}}{\left(y+v\right)\left(y-v\right)}
Mahia ngā whakarea i roto o 9yv+\left(y-v\right)\left(y-v\right).
\frac{v^{2}+7yv+y^{2}}{\left(y+v\right)\left(y-v\right)}
Whakakotahitia ngā kupu rite i 9yv+y^{2}-yv-yv+v^{2}.
\frac{v^{2}+7yv+y^{2}}{y^{2}-v^{2}}
Whakarohaina te \left(y+v\right)\left(y-v\right).
\frac{9yv}{\left(y+v\right)\left(y-v\right)}+\frac{y-v}{y+v}
Tauwehea te y^{2}-v^{2}.
\frac{9yv}{\left(y+v\right)\left(y-v\right)}+\frac{\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(y+v\right)\left(y-v\right) me y+v ko \left(y+v\right)\left(y-v\right). Whakareatia \frac{y-v}{y+v} ki te \frac{y-v}{y-v}.
\frac{9yv+\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}
Tā te mea he rite te tauraro o \frac{9yv}{\left(y+v\right)\left(y-v\right)} me \frac{\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9yv+y^{2}-yv-yv+v^{2}}{\left(y+v\right)\left(y-v\right)}
Mahia ngā whakarea i roto o 9yv+\left(y-v\right)\left(y-v\right).
\frac{v^{2}+7yv+y^{2}}{\left(y+v\right)\left(y-v\right)}
Whakakotahitia ngā kupu rite i 9yv+y^{2}-yv-yv+v^{2}.
\frac{v^{2}+7yv+y^{2}}{y^{2}-v^{2}}
Whakarohaina te \left(y+v\right)\left(y-v\right).