Aromātai
3y
Kimi Pārōnaki e ai ki y
3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{9y^{2}\times 2}{6y}
Whakareatia te y ki te y, ka y^{2}.
3y
Me whakakore tahi te 2\times 3y i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{18y}{6}y^{1-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}y}(3yy^{0})
Mahia ngā tātaitanga.
\frac{\mathrm{d}}{\mathrm{d}y}(3y)
Mō tētahi tau a mahue te 0, a^{0}=1.
0
Ko te pārōnaki o tētahi kupu taimau ko te 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}