Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{9y+3}{\left(y-9\right)\left(y-2\right)}+\frac{y+3}{y-9}
Tauwehea te y^{2}-11y+18.
\frac{9y+3}{\left(y-9\right)\left(y-2\right)}+\frac{\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(y-9\right)\left(y-2\right) me y-9 ko \left(y-9\right)\left(y-2\right). Whakareatia \frac{y+3}{y-9} ki te \frac{y-2}{y-2}.
\frac{9y+3+\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)}
Tā te mea he rite te tauraro o \frac{9y+3}{\left(y-9\right)\left(y-2\right)} me \frac{\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9y+3+y^{2}-2y+3y-6}{\left(y-9\right)\left(y-2\right)}
Mahia ngā whakarea i roto o 9y+3+\left(y+3\right)\left(y-2\right).
\frac{10y-3+y^{2}}{\left(y-9\right)\left(y-2\right)}
Whakakotahitia ngā kupu rite i 9y+3+y^{2}-2y+3y-6.
\frac{10y-3+y^{2}}{y^{2}-11y+18}
Whakarohaina te \left(y-9\right)\left(y-2\right).
\frac{9y+3}{\left(y-9\right)\left(y-2\right)}+\frac{y+3}{y-9}
Tauwehea te y^{2}-11y+18.
\frac{9y+3}{\left(y-9\right)\left(y-2\right)}+\frac{\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(y-9\right)\left(y-2\right) me y-9 ko \left(y-9\right)\left(y-2\right). Whakareatia \frac{y+3}{y-9} ki te \frac{y-2}{y-2}.
\frac{9y+3+\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)}
Tā te mea he rite te tauraro o \frac{9y+3}{\left(y-9\right)\left(y-2\right)} me \frac{\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9y+3+y^{2}-2y+3y-6}{\left(y-9\right)\left(y-2\right)}
Mahia ngā whakarea i roto o 9y+3+\left(y+3\right)\left(y-2\right).
\frac{10y-3+y^{2}}{\left(y-9\right)\left(y-2\right)}
Whakakotahitia ngā kupu rite i 9y+3+y^{2}-2y+3y-6.
\frac{10y-3+y^{2}}{y^{2}-11y+18}
Whakarohaina te \left(y-9\right)\left(y-2\right).