Whakaoti mō y
y=1
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 9 y + 2 } { 2 } = \frac { 7 y - 4 } { 6 } + 5
Tohaina
Kua tāruatia ki te papatopenga
3\left(9y+2\right)=7y-4+30
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6.
27y+6=7y-4+30
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 9y+2.
27y+6=7y+26
Tāpirihia te -4 ki te 30, ka 26.
27y+6-7y=26
Tangohia te 7y mai i ngā taha e rua.
20y+6=26
Pahekotia te 27y me -7y, ka 20y.
20y=26-6
Tangohia te 6 mai i ngā taha e rua.
20y=20
Tangohia te 6 i te 26, ka 20.
y=\frac{20}{20}
Whakawehea ngā taha e rua ki te 20.
y=1
Whakawehea te 20 ki te 20, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}