Whakaoti mō x
x = -\frac{212}{81} = -2\frac{50}{81} \approx -2.617283951
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(9x-1\right)-13\left(5x-8\right)=52x+312
Me whakarea ngā taha e rua o te whārite ki te 52, arā, te tauraro pātahi he tino iti rawa te kitea o 13,4.
36x-4-13\left(5x-8\right)=52x+312
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 9x-1.
36x-4-65x+104=52x+312
Whakamahia te āhuatanga tohatoha hei whakarea te -13 ki te 5x-8.
-29x-4+104=52x+312
Pahekotia te 36x me -65x, ka -29x.
-29x+100=52x+312
Tāpirihia te -4 ki te 104, ka 100.
-29x+100-52x=312
Tangohia te 52x mai i ngā taha e rua.
-81x+100=312
Pahekotia te -29x me -52x, ka -81x.
-81x=312-100
Tangohia te 100 mai i ngā taha e rua.
-81x=212
Tangohia te 100 i te 312, ka 212.
x=\frac{212}{-81}
Whakawehea ngā taha e rua ki te -81.
x=-\frac{212}{81}
Ka taea te hautanga \frac{212}{-81} te tuhi anō ko -\frac{212}{81} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}