Whakaoti mō x
x=-\frac{9}{41}\approx -0.219512195
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 9 x } { x + 1 } - \frac { 9 } { x ^ { 2 } + x } = 50
Tohaina
Kua tāruatia ki te papatopenga
x\times 9x-9=50x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x^{2}+x.
x^{2}\times 9-9=50x\left(x+1\right)
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 9-9=50x^{2}+50x
Whakamahia te āhuatanga tohatoha hei whakarea te 50x ki te x+1.
x^{2}\times 9-9-50x^{2}=50x
Tangohia te 50x^{2} mai i ngā taha e rua.
-41x^{2}-9=50x
Pahekotia te x^{2}\times 9 me -50x^{2}, ka -41x^{2}.
-41x^{2}-9-50x=0
Tangohia te 50x mai i ngā taha e rua.
-41x^{2}-50x-9=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-50 ab=-41\left(-9\right)=369
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -41x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-369 -3,-123 -9,-41
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 369.
-1-369=-370 -3-123=-126 -9-41=-50
Tātaihia te tapeke mō ia takirua.
a=-9 b=-41
Ko te otinga te takirua ka hoatu i te tapeke -50.
\left(-41x^{2}-9x\right)+\left(-41x-9\right)
Tuhia anō te -41x^{2}-50x-9 hei \left(-41x^{2}-9x\right)+\left(-41x-9\right).
-x\left(41x+9\right)-\left(41x+9\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(41x+9\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi 41x+9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{9}{41} x=-1
Hei kimi otinga whārite, me whakaoti te 41x+9=0 me te -x-1=0.
x=-\frac{9}{41}
Tē taea kia ōrite te tāupe x ki -1.
x\times 9x-9=50x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x^{2}+x.
x^{2}\times 9-9=50x\left(x+1\right)
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 9-9=50x^{2}+50x
Whakamahia te āhuatanga tohatoha hei whakarea te 50x ki te x+1.
x^{2}\times 9-9-50x^{2}=50x
Tangohia te 50x^{2} mai i ngā taha e rua.
-41x^{2}-9=50x
Pahekotia te x^{2}\times 9 me -50x^{2}, ka -41x^{2}.
-41x^{2}-9-50x=0
Tangohia te 50x mai i ngā taha e rua.
-41x^{2}-50x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\left(-41\right)\left(-9\right)}}{2\left(-41\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -41 mō a, -50 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\left(-41\right)\left(-9\right)}}{2\left(-41\right)}
Pūrua -50.
x=\frac{-\left(-50\right)±\sqrt{2500+164\left(-9\right)}}{2\left(-41\right)}
Whakareatia -4 ki te -41.
x=\frac{-\left(-50\right)±\sqrt{2500-1476}}{2\left(-41\right)}
Whakareatia 164 ki te -9.
x=\frac{-\left(-50\right)±\sqrt{1024}}{2\left(-41\right)}
Tāpiri 2500 ki te -1476.
x=\frac{-\left(-50\right)±32}{2\left(-41\right)}
Tuhia te pūtakerua o te 1024.
x=\frac{50±32}{2\left(-41\right)}
Ko te tauaro o -50 ko 50.
x=\frac{50±32}{-82}
Whakareatia 2 ki te -41.
x=\frac{82}{-82}
Nā, me whakaoti te whārite x=\frac{50±32}{-82} ina he tāpiri te ±. Tāpiri 50 ki te 32.
x=-1
Whakawehe 82 ki te -82.
x=\frac{18}{-82}
Nā, me whakaoti te whārite x=\frac{50±32}{-82} ina he tango te ±. Tango 32 mai i 50.
x=-\frac{9}{41}
Whakahekea te hautanga \frac{18}{-82} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-1 x=-\frac{9}{41}
Kua oti te whārite te whakatau.
x=-\frac{9}{41}
Tē taea kia ōrite te tāupe x ki -1.
x\times 9x-9=50x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x^{2}+x.
x^{2}\times 9-9=50x\left(x+1\right)
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 9-9=50x^{2}+50x
Whakamahia te āhuatanga tohatoha hei whakarea te 50x ki te x+1.
x^{2}\times 9-9-50x^{2}=50x
Tangohia te 50x^{2} mai i ngā taha e rua.
-41x^{2}-9=50x
Pahekotia te x^{2}\times 9 me -50x^{2}, ka -41x^{2}.
-41x^{2}-9-50x=0
Tangohia te 50x mai i ngā taha e rua.
-41x^{2}-50x=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-41x^{2}-50x}{-41}=\frac{9}{-41}
Whakawehea ngā taha e rua ki te -41.
x^{2}+\left(-\frac{50}{-41}\right)x=\frac{9}{-41}
Mā te whakawehe ki te -41 ka wetekia te whakareanga ki te -41.
x^{2}+\frac{50}{41}x=\frac{9}{-41}
Whakawehe -50 ki te -41.
x^{2}+\frac{50}{41}x=-\frac{9}{41}
Whakawehe 9 ki te -41.
x^{2}+\frac{50}{41}x+\left(\frac{25}{41}\right)^{2}=-\frac{9}{41}+\left(\frac{25}{41}\right)^{2}
Whakawehea te \frac{50}{41}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{25}{41}. Nā, tāpiria te pūrua o te \frac{25}{41} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{50}{41}x+\frac{625}{1681}=-\frac{9}{41}+\frac{625}{1681}
Pūruatia \frac{25}{41} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{50}{41}x+\frac{625}{1681}=\frac{256}{1681}
Tāpiri -\frac{9}{41} ki te \frac{625}{1681} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{25}{41}\right)^{2}=\frac{256}{1681}
Tauwehea x^{2}+\frac{50}{41}x+\frac{625}{1681}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{41}\right)^{2}}=\sqrt{\frac{256}{1681}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{25}{41}=\frac{16}{41} x+\frac{25}{41}=-\frac{16}{41}
Whakarūnātia.
x=-\frac{9}{41} x=-1
Me tango \frac{25}{41} mai i ngā taha e rua o te whārite.
x=-\frac{9}{41}
Tē taea kia ōrite te tāupe x ki -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}