Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(4x^{1}-8\right)\frac{\mathrm{d}}{\mathrm{d}x}(9x^{1})-9x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{1}-8)}{\left(4x^{1}-8\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(4x^{1}-8\right)\times 9x^{1-1}-9x^{1}\times 4x^{1-1}}{\left(4x^{1}-8\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(4x^{1}-8\right)\times 9x^{0}-9x^{1}\times 4x^{0}}{\left(4x^{1}-8\right)^{2}}
Mahia ngā tātaitanga.
\frac{4x^{1}\times 9x^{0}-8\times 9x^{0}-9x^{1}\times 4x^{0}}{\left(4x^{1}-8\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{4\times 9x^{1}-8\times 9x^{0}-9\times 4x^{1}}{\left(4x^{1}-8\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{36x^{1}-72x^{0}-36x^{1}}{\left(4x^{1}-8\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(36-36\right)x^{1}-72x^{0}}{\left(4x^{1}-8\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-72x^{0}}{\left(4x^{1}-8\right)^{2}}
Tango 36 mai i 36.
\frac{-72x^{0}}{\left(4x-8\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-72}{\left(4x-8\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.