Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{9^{1}x^{2}y^{4}}{6^{1}x^{1}y^{7}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{9^{1}}{6^{1}}x^{2-1}y^{4-7}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{9^{1}}{6^{1}}x^{1}y^{4-7}
Tango 1 mai i 2.
\frac{9^{1}}{6^{1}}xy^{-3}
Tango 7 mai i 4.
\frac{3}{2}x\times \frac{1}{y^{3}}
Whakahekea te hautanga \frac{9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9y^{4}}{6y^{7}}x^{2-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{2y^{3}}x^{1})
Mahia ngā tātaitanga.
\frac{3}{2y^{3}}x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{3}{2y^{3}}x^{0}
Mahia ngā tātaitanga.
\frac{3}{2y^{3}}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{3}{2y^{3}}
Mō tētahi kupu t, t\times 1=t me 1t=t.