Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Tohaina

\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Whakawehe \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} ki te \frac{6x+10y}{5x-25y} mā te whakarea \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} ki te tau huripoki o \frac{6x+10y}{5x-25y}.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Me whakakore tahi te \left(3x-5y\right)\left(3x+5y\right) i te taurunga me te tauraro.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Me whakarea te \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} ki te \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Me whakakore tahi te 9x^{2}+15xy+25y^{2} i te taurunga me te tauraro.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-5y.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 9x^{2}-18xy+5y^{2}.
\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Whakawehe \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} ki te \frac{6x+10y}{5x-25y} mā te whakarea \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} ki te tau huripoki o \frac{6x+10y}{5x-25y}.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Me whakakore tahi te \left(3x-5y\right)\left(3x+5y\right) i te taurunga me te tauraro.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Me whakarea te \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} ki te \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Me whakakore tahi te 9x^{2}+15xy+25y^{2} i te taurunga me te tauraro.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-5y.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 9x^{2}-18xy+5y^{2}.