Aromātai
3x^{5}
Kimi Pārōnaki e ai ki x
15x^{4}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(9x^{10}\right)^{1}\times \frac{1}{3x^{5}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
9^{1}\left(x^{10}\right)^{1}\times \frac{1}{3}\times \frac{1}{x^{5}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
9^{1}\times \frac{1}{3}\left(x^{10}\right)^{1}\times \frac{1}{x^{5}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
9^{1}\times \frac{1}{3}x^{10}x^{5\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
9^{1}\times \frac{1}{3}x^{10}x^{-5}
Whakareatia 5 ki te -1.
9^{1}\times \frac{1}{3}x^{10-5}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
9^{1}\times \frac{1}{3}x^{5}
Tāpirihia ngā taupū 10 me -5.
9\times \frac{1}{3}x^{5}
Hīkina te 9 ki te pū 1.
3x^{5}
Whakareatia 9 ki te \frac{1}{3}.
\frac{9^{1}x^{10}}{3^{1}x^{5}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{9^{1}x^{10-5}}{3^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{9^{1}x^{5}}{3^{1}}
Tango 5 mai i 10.
3x^{5}
Whakawehe 9 ki te 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9}{3}x^{10-5})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{5})
Mahia ngā tātaitanga.
5\times 3x^{5-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
15x^{4}
Mahia ngā tātaitanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}