Whakaoti mō x
x=\frac{\sqrt{649}}{24}+\frac{7}{8}\approx 1.936478267
x=-\frac{\sqrt{649}}{24}+\frac{7}{8}\approx -0.186478267
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(4x-7\right)\left(9x+7\right)=\left(7x-9\right)\left(4-0x\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara \frac{9}{7},\frac{7}{4} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(4x-7\right)\left(7x-9\right), arā, te tauraro pātahi he tino iti rawa te kitea o 7x-9,4x-7.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-7 ki te 9x+7 ka whakakotahi i ngā kupu rite.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0\right)
Ko te tau i whakarea ki te kore ka hua ko te kore.
36x^{2}-35x-49=\left(7x-9\right)\times 4
Tangohia te 0 i te 4, ka 4.
36x^{2}-35x-49=28x-36
Whakamahia te āhuatanga tohatoha hei whakarea te 7x-9 ki te 4.
36x^{2}-35x-49-28x=-36
Tangohia te 28x mai i ngā taha e rua.
36x^{2}-63x-49=-36
Pahekotia te -35x me -28x, ka -63x.
36x^{2}-63x-49+36=0
Me tāpiri te 36 ki ngā taha e rua.
36x^{2}-63x-13=0
Tāpirihia te -49 ki te 36, ka -13.
x=\frac{-\left(-63\right)±\sqrt{\left(-63\right)^{2}-4\times 36\left(-13\right)}}{2\times 36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 36 mō a, -63 mō b, me -13 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-63\right)±\sqrt{3969-4\times 36\left(-13\right)}}{2\times 36}
Pūrua -63.
x=\frac{-\left(-63\right)±\sqrt{3969-144\left(-13\right)}}{2\times 36}
Whakareatia -4 ki te 36.
x=\frac{-\left(-63\right)±\sqrt{3969+1872}}{2\times 36}
Whakareatia -144 ki te -13.
x=\frac{-\left(-63\right)±\sqrt{5841}}{2\times 36}
Tāpiri 3969 ki te 1872.
x=\frac{-\left(-63\right)±3\sqrt{649}}{2\times 36}
Tuhia te pūtakerua o te 5841.
x=\frac{63±3\sqrt{649}}{2\times 36}
Ko te tauaro o -63 ko 63.
x=\frac{63±3\sqrt{649}}{72}
Whakareatia 2 ki te 36.
x=\frac{3\sqrt{649}+63}{72}
Nā, me whakaoti te whārite x=\frac{63±3\sqrt{649}}{72} ina he tāpiri te ±. Tāpiri 63 ki te 3\sqrt{649}.
x=\frac{\sqrt{649}}{24}+\frac{7}{8}
Whakawehe 63+3\sqrt{649} ki te 72.
x=\frac{63-3\sqrt{649}}{72}
Nā, me whakaoti te whārite x=\frac{63±3\sqrt{649}}{72} ina he tango te ±. Tango 3\sqrt{649} mai i 63.
x=-\frac{\sqrt{649}}{24}+\frac{7}{8}
Whakawehe 63-3\sqrt{649} ki te 72.
x=\frac{\sqrt{649}}{24}+\frac{7}{8} x=-\frac{\sqrt{649}}{24}+\frac{7}{8}
Kua oti te whārite te whakatau.
\left(4x-7\right)\left(9x+7\right)=\left(7x-9\right)\left(4-0x\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara \frac{9}{7},\frac{7}{4} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(4x-7\right)\left(7x-9\right), arā, te tauraro pātahi he tino iti rawa te kitea o 7x-9,4x-7.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-7 ki te 9x+7 ka whakakotahi i ngā kupu rite.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0\right)
Ko te tau i whakarea ki te kore ka hua ko te kore.
36x^{2}-35x-49=\left(7x-9\right)\times 4
Tangohia te 0 i te 4, ka 4.
36x^{2}-35x-49=28x-36
Whakamahia te āhuatanga tohatoha hei whakarea te 7x-9 ki te 4.
36x^{2}-35x-49-28x=-36
Tangohia te 28x mai i ngā taha e rua.
36x^{2}-63x-49=-36
Pahekotia te -35x me -28x, ka -63x.
36x^{2}-63x=-36+49
Me tāpiri te 49 ki ngā taha e rua.
36x^{2}-63x=13
Tāpirihia te -36 ki te 49, ka 13.
\frac{36x^{2}-63x}{36}=\frac{13}{36}
Whakawehea ngā taha e rua ki te 36.
x^{2}+\left(-\frac{63}{36}\right)x=\frac{13}{36}
Mā te whakawehe ki te 36 ka wetekia te whakareanga ki te 36.
x^{2}-\frac{7}{4}x=\frac{13}{36}
Whakahekea te hautanga \frac{-63}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=\frac{13}{36}+\left(-\frac{7}{8}\right)^{2}
Whakawehea te -\frac{7}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{8}. Nā, tāpiria te pūrua o te -\frac{7}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{13}{36}+\frac{49}{64}
Pūruatia -\frac{7}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{649}{576}
Tāpiri \frac{13}{36} ki te \frac{49}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{8}\right)^{2}=\frac{649}{576}
Tauwehea x^{2}-\frac{7}{4}x+\frac{49}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{649}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{8}=\frac{\sqrt{649}}{24} x-\frac{7}{8}=-\frac{\sqrt{649}}{24}
Whakarūnātia.
x=\frac{\sqrt{649}}{24}+\frac{7}{8} x=-\frac{\sqrt{649}}{24}+\frac{7}{8}
Me tāpiri \frac{7}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}