Aromātai
\frac{3m-n}{5n^{2}}
Whakaroha
-\frac{n-3m}{5n^{2}}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { 9 m ^ { 2 } - n ^ { 2 } } { n ^ { 2 } } : ( 15 m + 5 n )
Tohaina
Kua tāruatia ki te papatopenga
\frac{9m^{2}-n^{2}}{n^{2}\left(15m+5n\right)}
Tuhia te \frac{\frac{9m^{2}-n^{2}}{n^{2}}}{15m+5n} hei hautanga kotahi.
\frac{\left(3m+n\right)\left(3m-n\right)}{5\left(3m+n\right)n^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3m-n}{5n^{2}}
Me whakakore tahi te 3m+n i te taurunga me te tauraro.
\frac{9m^{2}-n^{2}}{n^{2}\left(15m+5n\right)}
Tuhia te \frac{\frac{9m^{2}-n^{2}}{n^{2}}}{15m+5n} hei hautanga kotahi.
\frac{\left(3m+n\right)\left(3m-n\right)}{5\left(3m+n\right)n^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3m-n}{5n^{2}}
Me whakakore tahi te 3m+n i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}