Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{9m^{2}-1}{3m\left(m-2n\right)}+\frac{9m^{2}-6m+1}{6\left(m-2n\right)}
Tauwehea te 3m^{2}-6mn. Tauwehea te 6m-12n.
\frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)}+\frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3m\left(m-2n\right) me 6\left(m-2n\right) ko 6m\left(m-2n\right). Whakareatia \frac{9m^{2}-1}{3m\left(m-2n\right)} ki te \frac{2}{2}. Whakareatia \frac{9m^{2}-6m+1}{6\left(m-2n\right)} ki te \frac{m}{m}.
\frac{2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
Tā te mea he rite te tauraro o \frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)} me \frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{18m^{2}-2+9m^{3}-6m^{2}+m}{6m\left(m-2n\right)}
Mahia ngā whakarea i roto o 2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m.
\frac{12m^{2}-2+9m^{3}+m}{6m\left(m-2n\right)}
Whakakotahitia ngā kupu rite i 18m^{2}-2+9m^{3}-6m^{2}+m.
\frac{12m^{2}-2+9m^{3}+m}{6m^{2}-12mn}
Whakarohaina te 6m\left(m-2n\right).
\frac{9m^{2}-1}{3m\left(m-2n\right)}+\frac{9m^{2}-6m+1}{6\left(m-2n\right)}
Tauwehea te 3m^{2}-6mn. Tauwehea te 6m-12n.
\frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)}+\frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3m\left(m-2n\right) me 6\left(m-2n\right) ko 6m\left(m-2n\right). Whakareatia \frac{9m^{2}-1}{3m\left(m-2n\right)} ki te \frac{2}{2}. Whakareatia \frac{9m^{2}-6m+1}{6\left(m-2n\right)} ki te \frac{m}{m}.
\frac{2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
Tā te mea he rite te tauraro o \frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)} me \frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{18m^{2}-2+9m^{3}-6m^{2}+m}{6m\left(m-2n\right)}
Mahia ngā whakarea i roto o 2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m.
\frac{12m^{2}-2+9m^{3}+m}{6m\left(m-2n\right)}
Whakakotahitia ngā kupu rite i 18m^{2}-2+9m^{3}-6m^{2}+m.
\frac{12m^{2}-2+9m^{3}+m}{6m^{2}-12mn}
Whakarohaina te 6m\left(m-2n\right).