Whakaoti mō y
y=-\frac{24\sqrt{61}i}{61}\approx -0-3.072885118i
y=\frac{24\sqrt{61}i}{61}\approx 3.072885118i
Tohaina
Kua tāruatia ki te papatopenga
36\left(9-y^{2}\right)-25y^{2}=900
Me whakarea ngā taha e rua o te whārite ki te 900, arā, te tauraro pātahi he tino iti rawa te kitea o 25,36.
324-36y^{2}-25y^{2}=900
Whakamahia te āhuatanga tohatoha hei whakarea te 36 ki te 9-y^{2}.
324-61y^{2}=900
Pahekotia te -36y^{2} me -25y^{2}, ka -61y^{2}.
-61y^{2}=900-324
Tangohia te 324 mai i ngā taha e rua.
-61y^{2}=576
Tangohia te 324 i te 900, ka 576.
y^{2}=-\frac{576}{61}
Whakawehea ngā taha e rua ki te -61.
y=\frac{24\sqrt{61}i}{61} y=-\frac{24\sqrt{61}i}{61}
Kua oti te whārite te whakatau.
36\left(9-y^{2}\right)-25y^{2}=900
Me whakarea ngā taha e rua o te whārite ki te 900, arā, te tauraro pātahi he tino iti rawa te kitea o 25,36.
324-36y^{2}-25y^{2}=900
Whakamahia te āhuatanga tohatoha hei whakarea te 36 ki te 9-y^{2}.
324-61y^{2}=900
Pahekotia te -36y^{2} me -25y^{2}, ka -61y^{2}.
324-61y^{2}-900=0
Tangohia te 900 mai i ngā taha e rua.
-576-61y^{2}=0
Tangohia te 900 i te 324, ka -576.
-61y^{2}-576=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\left(-61\right)\left(-576\right)}}{2\left(-61\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -61 mō a, 0 mō b, me -576 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-61\right)\left(-576\right)}}{2\left(-61\right)}
Pūrua 0.
y=\frac{0±\sqrt{244\left(-576\right)}}{2\left(-61\right)}
Whakareatia -4 ki te -61.
y=\frac{0±\sqrt{-140544}}{2\left(-61\right)}
Whakareatia 244 ki te -576.
y=\frac{0±48\sqrt{61}i}{2\left(-61\right)}
Tuhia te pūtakerua o te -140544.
y=\frac{0±48\sqrt{61}i}{-122}
Whakareatia 2 ki te -61.
y=-\frac{24\sqrt{61}i}{61}
Nā, me whakaoti te whārite y=\frac{0±48\sqrt{61}i}{-122} ina he tāpiri te ±.
y=\frac{24\sqrt{61}i}{61}
Nā, me whakaoti te whārite y=\frac{0±48\sqrt{61}i}{-122} ina he tango te ±.
y=-\frac{24\sqrt{61}i}{61} y=\frac{24\sqrt{61}i}{61}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}