Aromātai
-\frac{\left(t-3\right)\left(t-2\right)}{3t\left(t+3\right)}
Whakaroha
-\frac{t^{2}-5t+6}{3t\left(t+3\right)}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(t-3\right)^{2}}{\left(t-3\right)\left(-t-3\right)}\times \frac{t^{2}-5t+6}{3t^{2}-9t}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{9-6t+t^{2}}{9-t^{2}}.
\frac{t-3}{-t-3}\times \frac{t^{2}-5t+6}{3t^{2}-9t}
Me whakakore tahi te t-3 i te taurunga me te tauraro.
\frac{t-3}{-t-3}\times \frac{\left(t-3\right)\left(t-2\right)}{3t\left(t-3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{t^{2}-5t+6}{3t^{2}-9t}.
\frac{t-3}{-t-3}\times \frac{t-2}{3t}
Me whakakore tahi te t-3 i te taurunga me te tauraro.
\frac{\left(t-3\right)\left(t-2\right)}{\left(-t-3\right)\times 3t}
Me whakarea te \frac{t-3}{-t-3} ki te \frac{t-2}{3t} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{t^{2}-5t+6}{\left(-t-3\right)\times 3t}
Whakamahia te āhuatanga tuaritanga hei whakarea te t-3 ki te t-2 ka whakakotahi i ngā kupu rite.
\frac{t^{2}-5t+6}{\left(-3t-9\right)t}
Whakamahia te āhuatanga tohatoha hei whakarea te -t-3 ki te 3.
\frac{t^{2}-5t+6}{-3t^{2}-9t}
Whakamahia te āhuatanga tohatoha hei whakarea te -3t-9 ki te t.
\frac{\left(t-3\right)^{2}}{\left(t-3\right)\left(-t-3\right)}\times \frac{t^{2}-5t+6}{3t^{2}-9t}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{9-6t+t^{2}}{9-t^{2}}.
\frac{t-3}{-t-3}\times \frac{t^{2}-5t+6}{3t^{2}-9t}
Me whakakore tahi te t-3 i te taurunga me te tauraro.
\frac{t-3}{-t-3}\times \frac{\left(t-3\right)\left(t-2\right)}{3t\left(t-3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{t^{2}-5t+6}{3t^{2}-9t}.
\frac{t-3}{-t-3}\times \frac{t-2}{3t}
Me whakakore tahi te t-3 i te taurunga me te tauraro.
\frac{\left(t-3\right)\left(t-2\right)}{\left(-t-3\right)\times 3t}
Me whakarea te \frac{t-3}{-t-3} ki te \frac{t-2}{3t} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{t^{2}-5t+6}{\left(-t-3\right)\times 3t}
Whakamahia te āhuatanga tuaritanga hei whakarea te t-3 ki te t-2 ka whakakotahi i ngā kupu rite.
\frac{t^{2}-5t+6}{\left(-3t-9\right)t}
Whakamahia te āhuatanga tohatoha hei whakarea te -t-3 ki te 3.
\frac{t^{2}-5t+6}{-3t^{2}-9t}
Whakamahia te āhuatanga tohatoha hei whakarea te -3t-9 ki te t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}