Whakaoti mō x
x=-3
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 9 } { x - 3 } - \frac { 27 } { x ( x - 3 ) } = - 3
Tohaina
Kua tāruatia ki te papatopenga
x\times 9-27=-3x\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x\left(x-3\right).
x\times 9-27=-3x^{2}+9x
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te x-3.
x\times 9-27+3x^{2}=9x
Me tāpiri te 3x^{2} ki ngā taha e rua.
x\times 9-27+3x^{2}-9x=0
Tangohia te 9x mai i ngā taha e rua.
-27+3x^{2}=0
Pahekotia te x\times 9 me -9x, ka 0.
-9+x^{2}=0
Whakawehea ngā taha e rua ki te 3.
\left(x-3\right)\left(x+3\right)=0
Whakaarohia te -9+x^{2}. Tuhia anō te -9+x^{2} hei x^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+3=0.
x=-3
Tē taea kia ōrite te tāupe x ki 3.
x\times 9-27=-3x\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x\left(x-3\right).
x\times 9-27=-3x^{2}+9x
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te x-3.
x\times 9-27+3x^{2}=9x
Me tāpiri te 3x^{2} ki ngā taha e rua.
x\times 9-27+3x^{2}-9x=0
Tangohia te 9x mai i ngā taha e rua.
-27+3x^{2}=0
Pahekotia te x\times 9 me -9x, ka 0.
3x^{2}=27
Me tāpiri te 27 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{27}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=9
Whakawehea te 27 ki te 3, kia riro ko 9.
x=3 x=-3
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x=-3
Tē taea kia ōrite te tāupe x ki 3.
x\times 9-27=-3x\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x\left(x-3\right).
x\times 9-27=-3x^{2}+9x
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te x-3.
x\times 9-27+3x^{2}=9x
Me tāpiri te 3x^{2} ki ngā taha e rua.
x\times 9-27+3x^{2}-9x=0
Tangohia te 9x mai i ngā taha e rua.
-27+3x^{2}=0
Pahekotia te x\times 9 me -9x, ka 0.
3x^{2}-27=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-27\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -27 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-27\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-27\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{324}}{2\times 3}
Whakareatia -12 ki te -27.
x=\frac{0±18}{2\times 3}
Tuhia te pūtakerua o te 324.
x=\frac{0±18}{6}
Whakareatia 2 ki te 3.
x=3
Nā, me whakaoti te whārite x=\frac{0±18}{6} ina he tāpiri te ±. Whakawehe 18 ki te 6.
x=-3
Nā, me whakaoti te whārite x=\frac{0±18}{6} ina he tango te ±. Whakawehe -18 ki te 6.
x=3 x=-3
Kua oti te whārite te whakatau.
x=-3
Tē taea kia ōrite te tāupe x ki 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}