Whakaoti mō k
k=-14
Tohaina
Kua tāruatia ki te papatopenga
k\times 9=\left(k-7\right)\times 6
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara 0,7 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te k\left(k-7\right), arā, te tauraro pātahi he tino iti rawa te kitea o k-7,k.
k\times 9=6k-42
Whakamahia te āhuatanga tohatoha hei whakarea te k-7 ki te 6.
k\times 9-6k=-42
Tangohia te 6k mai i ngā taha e rua.
3k=-42
Pahekotia te k\times 9 me -6k, ka 3k.
k=\frac{-42}{3}
Whakawehea ngā taha e rua ki te 3.
k=-14
Whakawehea te -42 ki te 3, kia riro ko -14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}