Whakaoti mō x
x = \frac{13}{10} = 1\frac{3}{10} = 1.3
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 9 } { 2 x + 1 } - \frac { 8 x } { 2 x - 1 } = - 4
Tohaina
Kua tāruatia ki te papatopenga
\left(2x-1\right)\times 9-\left(2x+1\right)\times 8x=-4\left(2x-1\right)\left(2x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x-1\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+1,2x-1.
18x-9-\left(2x+1\right)\times 8x=-4\left(2x-1\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-1 ki te 9.
18x-9-\left(16x+8\right)x=-4\left(2x-1\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+1 ki te 8.
18x-9-\left(16x^{2}+8x\right)=-4\left(2x-1\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 16x+8 ki te x.
18x-9-16x^{2}-8x=-4\left(2x-1\right)\left(2x+1\right)
Hei kimi i te tauaro o 16x^{2}+8x, kimihia te tauaro o ia taurangi.
10x-9-16x^{2}=-4\left(2x-1\right)\left(2x+1\right)
Pahekotia te 18x me -8x, ka 10x.
10x-9-16x^{2}=\left(-8x+4\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 2x-1.
10x-9-16x^{2}=-16x^{2}+4
Whakamahia te āhuatanga tuaritanga hei whakarea te -8x+4 ki te 2x+1 ka whakakotahi i ngā kupu rite.
10x-9-16x^{2}+16x^{2}=4
Me tāpiri te 16x^{2} ki ngā taha e rua.
10x-9=4
Pahekotia te -16x^{2} me 16x^{2}, ka 0.
10x=4+9
Me tāpiri te 9 ki ngā taha e rua.
10x=13
Tāpirihia te 4 ki te 9, ka 13.
x=\frac{13}{10}
Whakawehea ngā taha e rua ki te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}