Aromātai
-5\sqrt{6}\approx -12.247448714
Tohaina
Kua tāruatia ki te papatopenga
\frac{9\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Whakangāwaritia te tauraro o \frac{9}{\sqrt{7}-2} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}+2.
\frac{9\left(\sqrt{7}+2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Whakaarohia te \left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{9\left(\sqrt{7}+2\right)}{7-4}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Pūrua \sqrt{7}. Pūrua 2.
\frac{9\left(\sqrt{7}+2\right)}{3}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Tangohia te 4 i te 7, ka 3.
3\left(\sqrt{7}+2\right)-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Whakawehea te 9\left(\sqrt{7}+2\right) ki te 3, kia riro ko 3\left(\sqrt{7}+2\right).
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{5}{\sqrt{6}-\sqrt{7}}
Whakangāwaritia te tauraro o \frac{4}{3+\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te 3-\sqrt{7}.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Whakaarohia te \left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{9-7}+\frac{5}{\sqrt{6}-\sqrt{7}}
Pūrua 3. Pūrua \sqrt{7}.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{2}+\frac{5}{\sqrt{6}-\sqrt{7}}
Tangohia te 7 i te 9, ka 2.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5}{\sqrt{6}-\sqrt{7}}
Whakawehea te 4\left(3-\sqrt{7}\right) ki te 2, kia riro ko 2\left(3-\sqrt{7}\right).
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{6}+\sqrt{7}\right)}
Whakangāwaritia te tauraro o \frac{5}{\sqrt{6}-\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}+\sqrt{7}.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Whakaarohia te \left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{6}+\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{6-7}
Pūrua \sqrt{6}. Pūrua \sqrt{7}.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{-1}
Tangohia te 7 i te 6, ka -1.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
3\sqrt{7}+6-2\left(3-\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te \sqrt{7}+2.
3\sqrt{7}+6-\left(6-2\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3-\sqrt{7}.
3\sqrt{7}+6-6-\left(-2\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
Hei kimi i te tauaro o 6-2\sqrt{7}, kimihia te tauaro o ia taurangi.
3\sqrt{7}+6-6+2\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
Ko te tauaro o -2\sqrt{7} ko 2\sqrt{7}.
3\sqrt{7}+2\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
Tangohia te 6 i te 6, ka 0.
5\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
Pahekotia te 3\sqrt{7} me 2\sqrt{7}, ka 5\sqrt{7}.
5\sqrt{7}-5\sqrt{6}-5\sqrt{7}
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te \sqrt{6}+\sqrt{7}.
-5\sqrt{6}
Pahekotia te 5\sqrt{7} me -5\sqrt{7}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}