Aromātai
\frac{1152000000000000000000000000000000000000000}{5037851}\approx 2.286689305 \cdot 10^{35}
Tauwehe
\frac{2 ^ {46} \cdot 3 ^ {2} \cdot 5 ^ {39}}{7 \cdot 13 \cdot 23 \cdot 29 \cdot 83} = 2.2866893046261194 \times 10^{35}\frac{336198}{5037851} = 2.2866893046261194 \times 10^{35}
Tohaina
Kua tāruatia ki te papatopenga
\frac{9\times 10^{8}\times \left(16\times 10^{-19}\right)^{2}}{667\times 10^{-42}\times 91\times 166\times 10^{-27}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -11 me te -31 kia riro ai te -42.
\frac{9\times 10^{8}\times \left(16\times 10^{-19}\right)^{2}}{667\times 10^{-69}\times 91\times 166}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -42 me te -27 kia riro ai te -69.
\frac{9\times 10^{77}\times \left(16\times 10^{-19}\right)^{2}}{91\times 166\times 667}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{9\times 100000000000000000000000000000000000000000000000000000000000000000000000000000\times \left(16\times 10^{-19}\right)^{2}}{91\times 166\times 667}
Tātaihia te 10 mā te pū o 77, kia riro ko 100000000000000000000000000000000000000000000000000000000000000000000000000000.
\frac{900000000000000000000000000000000000000000000000000000000000000000000000000000\times \left(16\times 10^{-19}\right)^{2}}{91\times 166\times 667}
Whakareatia te 9 ki te 100000000000000000000000000000000000000000000000000000000000000000000000000000, ka 900000000000000000000000000000000000000000000000000000000000000000000000000000.
\frac{900000000000000000000000000000000000000000000000000000000000000000000000000000\times \left(16\times \frac{1}{10000000000000000000}\right)^{2}}{91\times 166\times 667}
Tātaihia te 10 mā te pū o -19, kia riro ko \frac{1}{10000000000000000000}.
\frac{900000000000000000000000000000000000000000000000000000000000000000000000000000\times \left(\frac{1}{625000000000000000}\right)^{2}}{91\times 166\times 667}
Whakareatia te 16 ki te \frac{1}{10000000000000000000}, ka \frac{1}{625000000000000000}.
\frac{900000000000000000000000000000000000000000000000000000000000000000000000000000\times \frac{1}{390625000000000000000000000000000000}}{91\times 166\times 667}
Tātaihia te \frac{1}{625000000000000000} mā te pū o 2, kia riro ko \frac{1}{390625000000000000000000000000000000}.
\frac{2304000000000000000000000000000000000000000}{91\times 166\times 667}
Whakareatia te 900000000000000000000000000000000000000000000000000000000000000000000000000000 ki te \frac{1}{390625000000000000000000000000000000}, ka 2304000000000000000000000000000000000000000.
\frac{2304000000000000000000000000000000000000000}{15106\times 667}
Whakareatia te 91 ki te 166, ka 15106.
\frac{2304000000000000000000000000000000000000000}{10075702}
Whakareatia te 15106 ki te 667, ka 10075702.
\frac{1152000000000000000000000000000000000000000}{5037851}
Whakahekea te hautanga \frac{2304000000000000000000000000000000000000000}{10075702} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}