Aromātai
-\frac{32}{11}\approx -2.909090909
Tauwehe
-\frac{32}{11} = -2\frac{10}{11} = -2.909090909090909
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 9 \frac { 5 } { 3 } } { 3 - 5 \frac { 5 } { 3 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{27+5}{3}}{3-\frac{5\times 3+5}{3}}
Whakareatia te 9 ki te 3, ka 27.
\frac{\frac{32}{3}}{3-\frac{5\times 3+5}{3}}
Tāpirihia te 27 ki te 5, ka 32.
\frac{\frac{32}{3}}{3-\frac{15+5}{3}}
Whakareatia te 5 ki te 3, ka 15.
\frac{\frac{32}{3}}{3-\frac{20}{3}}
Tāpirihia te 15 ki te 5, ka 20.
\frac{\frac{32}{3}}{\frac{9}{3}-\frac{20}{3}}
Me tahuri te 3 ki te hautau \frac{9}{3}.
\frac{\frac{32}{3}}{\frac{9-20}{3}}
Tā te mea he rite te tauraro o \frac{9}{3} me \frac{20}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{32}{3}}{-\frac{11}{3}}
Tangohia te 20 i te 9, ka -11.
\frac{32}{3}\left(-\frac{3}{11}\right)
Whakawehe \frac{32}{3} ki te -\frac{11}{3} mā te whakarea \frac{32}{3} ki te tau huripoki o -\frac{11}{3}.
\frac{32\left(-3\right)}{3\times 11}
Me whakarea te \frac{32}{3} ki te -\frac{3}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-96}{33}
Mahia ngā whakarea i roto i te hautanga \frac{32\left(-3\right)}{3\times 11}.
-\frac{32}{11}
Whakahekea te hautanga \frac{-96}{33} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}