Whakaoti mō n
n=4
Tohaina
Kua tāruatia ki te papatopenga
\frac{9^{n}\times 3^{2}\times 3^{n}-27^{n}}{3^{15}\times 2^{3}}=\frac{1}{27}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 5 kia riro ai te 15.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{3^{15}\times 2^{3}}=\frac{1}{27}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{14348907\times 2^{3}}=\frac{1}{27}
Tātaihia te 3 mā te pū o 15, kia riro ko 14348907.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{14348907\times 8}=\frac{1}{27}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256}=\frac{1}{27}
Whakareatia te 14348907 ki te 8, ka 114791256.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256}-\frac{1}{27}=0
Tangohia te \frac{1}{27} mai i ngā taha e rua.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256}-\frac{4251528}{114791256}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 114791256 me 27 ko 114791256. Whakareatia \frac{1}{27} ki te \frac{4251528}{4251528}.
\frac{9^{n}\times 9\times 3^{n}-27^{n}-4251528}{114791256}=0
Tā te mea he rite te tauraro o \frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256} me \frac{4251528}{114791256}, me tango rāua mā te tango i ō raua taurunga.
\frac{9\times 27^{n}-27^{n}-4251528}{114791256}=0
Mahia ngā whakarea i roto o 9^{n}\times 9\times 3^{n}-27^{n}-4251528.
\frac{8\times 27^{n}-4251528}{114791256}=0
Whakakotahitia ngā kupu rite i 9\times 27^{n}-27^{n}-4251528.
\frac{1}{14348907}\times 27^{n}-\frac{1}{27}=0
Whakawehea ia wā o 8\times 27^{n}-4251528 ki te 114791256, kia riro ko \frac{1}{14348907}\times 27^{n}-\frac{1}{27}.
\frac{1}{14348907}\times 27^{n}=\frac{1}{27}
Me tāpiri \frac{1}{27} ki ngā taha e rua o te whārite.
27^{n}=531441
Me whakarea ngā taha e rua ki te 14348907.
\log(27^{n})=\log(531441)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
n\log(27)=\log(531441)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
n=\frac{\log(531441)}{\log(27)}
Whakawehea ngā taha e rua ki te \log(27).
n=\log_{27}\left(531441\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}