Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{9^{n}\times 3^{2}\times 3^{n}-27^{n}}{3^{15}\times 2^{3}}=\frac{1}{27}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 5 kia riro ai te 15.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{3^{15}\times 2^{3}}=\frac{1}{27}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{14348907\times 2^{3}}=\frac{1}{27}
Tātaihia te 3 mā te pū o 15, kia riro ko 14348907.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{14348907\times 8}=\frac{1}{27}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256}=\frac{1}{27}
Whakareatia te 14348907 ki te 8, ka 114791256.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256}-\frac{1}{27}=0
Tangohia te \frac{1}{27} mai i ngā taha e rua.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256}-\frac{4251528}{114791256}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 114791256 me 27 ko 114791256. Whakareatia \frac{1}{27} ki te \frac{4251528}{4251528}.
\frac{9^{n}\times 9\times 3^{n}-27^{n}-4251528}{114791256}=0
Tā te mea he rite te tauraro o \frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256} me \frac{4251528}{114791256}, me tango rāua mā te tango i ō raua taurunga.
\frac{9\times 27^{n}-27^{n}-4251528}{114791256}=0
Mahia ngā whakarea i roto o 9^{n}\times 9\times 3^{n}-27^{n}-4251528.
\frac{8\times 27^{n}-4251528}{114791256}=0
Whakakotahitia ngā kupu rite i 9\times 27^{n}-27^{n}-4251528.
\frac{1}{14348907}\times 27^{n}-\frac{1}{27}=0
Whakawehea ia wā o 8\times 27^{n}-4251528 ki te 114791256, kia riro ko \frac{1}{14348907}\times 27^{n}-\frac{1}{27}.
\frac{1}{14348907}\times 27^{n}=\frac{1}{27}
Me tāpiri \frac{1}{27} ki ngā taha e rua o te whārite.
27^{n}=531441
Me whakarea ngā taha e rua ki te 14348907.
\log(27^{n})=\log(531441)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
n\log(27)=\log(531441)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
n=\frac{\log(531441)}{\log(27)}
Whakawehea ngā taha e rua ki te \log(27).
n=\log_{27}\left(531441\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).