Whakaoti mō a (complex solution)
a=\frac{-9\sqrt{3}i-9}{2}\approx -4.5-7.794228634i
a=9
a=\frac{-9+9\sqrt{3}i}{2}\approx -4.5+7.794228634i
Whakaoti mō a
a=9
Tohaina
Kua tāruatia ki te papatopenga
9^{3}=a^{6-3}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 3 i te 6 kia riro ai te 3.
729=a^{6-3}
Tātaihia te 9 mā te pū o 3, kia riro ko 729.
729=a^{3}
Tangohia te 3 i te 6, ka 3.
a^{3}=729
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a^{3}-729=0
Tangohia te 729 mai i ngā taha e rua.
±729,±243,±81,±27,±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -729, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
a=9
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
a^{2}+9a+81=0
Mā te whakatakotoranga Tauwehe, he tauwehe te a-k o te pūrau mō ia pūtake k. Whakawehea te a^{3}-729 ki te a-9, kia riro ko a^{2}+9a+81. Whakaotihia te whārite ina ōrite te hua ki te 0.
a=\frac{-9±\sqrt{9^{2}-4\times 1\times 81}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 9 mō te b, me te 81 mō te c i te ture pūrua.
a=\frac{-9±\sqrt{-243}}{2}
Mahia ngā tātaitai.
a=\frac{-9i\sqrt{3}-9}{2} a=\frac{-9+9i\sqrt{3}}{2}
Whakaotia te whārite a^{2}+9a+81=0 ina he tōrunga te ±, ina he tōraro te ±.
a=9 a=\frac{-9i\sqrt{3}-9}{2} a=\frac{-9+9i\sqrt{3}}{2}
Rārangitia ngā otinga katoa i kitea.
9^{3}=a^{6-3}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 3 i te 6 kia riro ai te 3.
729=a^{6-3}
Tātaihia te 9 mā te pū o 3, kia riro ko 729.
729=a^{3}
Tangohia te 3 i te 6, ka 3.
a^{3}=729
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a^{3}-729=0
Tangohia te 729 mai i ngā taha e rua.
±729,±243,±81,±27,±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -729, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
a=9
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
a^{2}+9a+81=0
Mā te whakatakotoranga Tauwehe, he tauwehe te a-k o te pūrau mō ia pūtake k. Whakawehea te a^{3}-729 ki te a-9, kia riro ko a^{2}+9a+81. Whakaotihia te whārite ina ōrite te hua ki te 0.
a=\frac{-9±\sqrt{9^{2}-4\times 1\times 81}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 9 mō te b, me te 81 mō te c i te ture pūrua.
a=\frac{-9±\sqrt{-243}}{2}
Mahia ngā tātaitai.
a\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
a=9
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}