Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9^{3}=a^{6-3}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 3 i te 6 kia riro ai te 3.
729=a^{6-3}
Tātaihia te 9 mā te pū o 3, kia riro ko 729.
729=a^{3}
Tangohia te 3 i te 6, ka 3.
a^{3}=729
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a^{3}-729=0
Tangohia te 729 mai i ngā taha e rua.
±729,±243,±81,±27,±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -729, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
a=9
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
a^{2}+9a+81=0
Mā te whakatakotoranga Tauwehe, he tauwehe te a-k o te pūrau mō ia pūtake k. Whakawehea te a^{3}-729 ki te a-9, kia riro ko a^{2}+9a+81. Whakaotihia te whārite ina ōrite te hua ki te 0.
a=\frac{-9±\sqrt{9^{2}-4\times 1\times 81}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 9 mō te b, me te 81 mō te c i te ture pūrua.
a=\frac{-9±\sqrt{-243}}{2}
Mahia ngā tātaitai.
a=\frac{-9i\sqrt{3}-9}{2} a=\frac{-9+9i\sqrt{3}}{2}
Whakaotia te whārite a^{2}+9a+81=0 ina he tōrunga te ±, ina he tōraro te ±.
a=9 a=\frac{-9i\sqrt{3}-9}{2} a=\frac{-9+9i\sqrt{3}}{2}
Rārangitia ngā otinga katoa i kitea.
9^{3}=a^{6-3}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 3 i te 6 kia riro ai te 3.
729=a^{6-3}
Tātaihia te 9 mā te pū o 3, kia riro ko 729.
729=a^{3}
Tangohia te 3 i te 6, ka 3.
a^{3}=729
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a^{3}-729=0
Tangohia te 729 mai i ngā taha e rua.
±729,±243,±81,±27,±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -729, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
a=9
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
a^{2}+9a+81=0
Mā te whakatakotoranga Tauwehe, he tauwehe te a-k o te pūrau mō ia pūtake k. Whakawehea te a^{3}-729 ki te a-9, kia riro ko a^{2}+9a+81. Whakaotihia te whārite ina ōrite te hua ki te 0.
a=\frac{-9±\sqrt{9^{2}-4\times 1\times 81}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 9 mō te b, me te 81 mō te c i te ture pūrua.
a=\frac{-9±\sqrt{-243}}{2}
Mahia ngā tātaitai.
a\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
a=9
Rārangitia ngā otinga katoa i kitea.