Whakaoti mō x
x\in (-\infty,-94)\cup [6,\infty)
Graph
Tohaina
Kua tāruatia ki te papatopenga
94+x>0 94+x<0
Kāore e taea a te tauraro 94+x te numa kore nā te mea kāore te rituatanga mā te kore e tautuhi. E rua ngā kēhi.
x>-94
Whakaarohia te kēhi i ngā wā kei te tōrunga a 94+x. Neke atu a 94 ki te taha matau.
84+x\geq \frac{9}{10}\left(94+x\right)
Kāore te tōrite tuatahi e whakarerekē te aronga ina e whakarea ana mā 94+x mō 94+x>0.
84+x\geq \frac{423}{5}+\frac{9}{10}x
Whakarea te katoa o te taha matau.
x-\frac{9}{10}x\geq -84+\frac{423}{5}
Neke atu ngā kīanga tau e whai ana i x ki te taha mauī me ētahi atu kupu katoa ki te taha matau.
\frac{1}{10}x\geq \frac{3}{5}
Pahekotia ngā kīanga tau ōrite.
x\geq 6
Whakawehea ngā taha e rua ki te \frac{1}{10}. I te mea he tōrunga te \frac{1}{10}, kāore e huri te ahunga koreōrite.
x<-94
Tēnā, me whakaarohia te tauira ina e tōraro a 94+x. Neke atu a 94 ki te taha matau.
84+x\leq \frac{9}{10}\left(94+x\right)
E whakarerekē ana te aronga o te tōrite tuatahi hei ngā wā e whakarea ana a 94+x mō 94+x<0.
84+x\leq \frac{423}{5}+\frac{9}{10}x
Whakarea te katoa o te taha matau.
x-\frac{9}{10}x\leq -84+\frac{423}{5}
Neke atu ngā kīanga tau e whai ana i x ki te taha mauī me ētahi atu kupu katoa ki te taha matau.
\frac{1}{10}x\leq \frac{3}{5}
Pahekotia ngā kīanga tau ōrite.
x\leq 6
Whakawehea ngā taha e rua ki te \frac{1}{10}. I te mea he tōrunga te \frac{1}{10}, kāore e huri te ahunga koreōrite.
x<-94
Whakaarohia te herenga x<-94 e tautuhi ana ki runga.
x\in (-\infty,-94)\cup [6,\infty)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}