Whakaoti mō x
x = \frac{1300}{51} = 25\frac{25}{51} \approx 25.490196078
Graph
Tohaina
Kua tāruatia ki te papatopenga
32\left(81-x\right)=19\left(68+x\right)
Me whakarea ngā taha e rua o te whārite ki te 608, arā, te tauraro pātahi he tino iti rawa te kitea o 19,32.
2592-32x=19\left(68+x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 32 ki te 81-x.
2592-32x=1292+19x
Whakamahia te āhuatanga tohatoha hei whakarea te 19 ki te 68+x.
2592-32x-19x=1292
Tangohia te 19x mai i ngā taha e rua.
2592-51x=1292
Pahekotia te -32x me -19x, ka -51x.
-51x=1292-2592
Tangohia te 2592 mai i ngā taha e rua.
-51x=-1300
Tangohia te 2592 i te 1292, ka -1300.
x=\frac{-1300}{-51}
Whakawehea ngā taha e rua ki te -51.
x=\frac{1300}{51}
Ka taea te hautanga \frac{-1300}{-51} te whakamāmā ki te \frac{1300}{51} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}