Whakaoti mō y
y = \frac{\sqrt{413629} + 767}{30} \approx 47.004665122
y = \frac{767 - \sqrt{413629}}{30} \approx 4.128668211
Graph
Tohaina
Kua tāruatia ki te papatopenga
-y\times 81+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara 0,41 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te y\left(y-41\right), arā, te tauraro pātahi he tino iti rawa te kitea o 41-y,y.
-81y+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
Whakareatia te -1 ki te 81, ka -81.
-81y+\left(y^{2}-41y\right)\times 15=\left(y-41\right)\times 71
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y-41.
-81y+15y^{2}-615y=\left(y-41\right)\times 71
Whakamahia te āhuatanga tohatoha hei whakarea te y^{2}-41y ki te 15.
-696y+15y^{2}=\left(y-41\right)\times 71
Pahekotia te -81y me -615y, ka -696y.
-696y+15y^{2}=71y-2911
Whakamahia te āhuatanga tohatoha hei whakarea te y-41 ki te 71.
-696y+15y^{2}-71y=-2911
Tangohia te 71y mai i ngā taha e rua.
-767y+15y^{2}=-2911
Pahekotia te -696y me -71y, ka -767y.
-767y+15y^{2}+2911=0
Me tāpiri te 2911 ki ngā taha e rua.
15y^{2}-767y+2911=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-767\right)±\sqrt{\left(-767\right)^{2}-4\times 15\times 2911}}{2\times 15}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15 mō a, -767 mō b, me 2911 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-767\right)±\sqrt{588289-4\times 15\times 2911}}{2\times 15}
Pūrua -767.
y=\frac{-\left(-767\right)±\sqrt{588289-60\times 2911}}{2\times 15}
Whakareatia -4 ki te 15.
y=\frac{-\left(-767\right)±\sqrt{588289-174660}}{2\times 15}
Whakareatia -60 ki te 2911.
y=\frac{-\left(-767\right)±\sqrt{413629}}{2\times 15}
Tāpiri 588289 ki te -174660.
y=\frac{767±\sqrt{413629}}{2\times 15}
Ko te tauaro o -767 ko 767.
y=\frac{767±\sqrt{413629}}{30}
Whakareatia 2 ki te 15.
y=\frac{\sqrt{413629}+767}{30}
Nā, me whakaoti te whārite y=\frac{767±\sqrt{413629}}{30} ina he tāpiri te ±. Tāpiri 767 ki te \sqrt{413629}.
y=\frac{767-\sqrt{413629}}{30}
Nā, me whakaoti te whārite y=\frac{767±\sqrt{413629}}{30} ina he tango te ±. Tango \sqrt{413629} mai i 767.
y=\frac{\sqrt{413629}+767}{30} y=\frac{767-\sqrt{413629}}{30}
Kua oti te whārite te whakatau.
-y\times 81+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara 0,41 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te y\left(y-41\right), arā, te tauraro pātahi he tino iti rawa te kitea o 41-y,y.
-81y+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
Whakareatia te -1 ki te 81, ka -81.
-81y+\left(y^{2}-41y\right)\times 15=\left(y-41\right)\times 71
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y-41.
-81y+15y^{2}-615y=\left(y-41\right)\times 71
Whakamahia te āhuatanga tohatoha hei whakarea te y^{2}-41y ki te 15.
-696y+15y^{2}=\left(y-41\right)\times 71
Pahekotia te -81y me -615y, ka -696y.
-696y+15y^{2}=71y-2911
Whakamahia te āhuatanga tohatoha hei whakarea te y-41 ki te 71.
-696y+15y^{2}-71y=-2911
Tangohia te 71y mai i ngā taha e rua.
-767y+15y^{2}=-2911
Pahekotia te -696y me -71y, ka -767y.
15y^{2}-767y=-2911
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{15y^{2}-767y}{15}=-\frac{2911}{15}
Whakawehea ngā taha e rua ki te 15.
y^{2}-\frac{767}{15}y=-\frac{2911}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
y^{2}-\frac{767}{15}y+\left(-\frac{767}{30}\right)^{2}=-\frac{2911}{15}+\left(-\frac{767}{30}\right)^{2}
Whakawehea te -\frac{767}{15}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{767}{30}. Nā, tāpiria te pūrua o te -\frac{767}{30} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{767}{15}y+\frac{588289}{900}=-\frac{2911}{15}+\frac{588289}{900}
Pūruatia -\frac{767}{30} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{767}{15}y+\frac{588289}{900}=\frac{413629}{900}
Tāpiri -\frac{2911}{15} ki te \frac{588289}{900} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y-\frac{767}{30}\right)^{2}=\frac{413629}{900}
Tauwehea y^{2}-\frac{767}{15}y+\frac{588289}{900}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{767}{30}\right)^{2}}=\sqrt{\frac{413629}{900}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{767}{30}=\frac{\sqrt{413629}}{30} y-\frac{767}{30}=-\frac{\sqrt{413629}}{30}
Whakarūnātia.
y=\frac{\sqrt{413629}+767}{30} y=\frac{767-\sqrt{413629}}{30}
Me tāpiri \frac{767}{30} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}