Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{80}{x}-\frac{180x+800+x^{2}}{2x\left(x+20\right)}
Tauwehea te 2x^{2}+40x.
\frac{80\times 2\left(x+20\right)}{2x\left(x+20\right)}-\frac{180x+800+x^{2}}{2x\left(x+20\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x me 2x\left(x+20\right) ko 2x\left(x+20\right). Whakareatia \frac{80}{x} ki te \frac{2\left(x+20\right)}{2\left(x+20\right)}.
\frac{80\times 2\left(x+20\right)-\left(180x+800+x^{2}\right)}{2x\left(x+20\right)}
Tā te mea he rite te tauraro o \frac{80\times 2\left(x+20\right)}{2x\left(x+20\right)} me \frac{180x+800+x^{2}}{2x\left(x+20\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{160x+3200-180x-800-x^{2}}{2x\left(x+20\right)}
Mahia ngā whakarea i roto o 80\times 2\left(x+20\right)-\left(180x+800+x^{2}\right).
\frac{-20x+2400-x^{2}}{2x\left(x+20\right)}
Whakakotahitia ngā kupu rite i 160x+3200-180x-800-x^{2}.
\frac{-20x+2400-x^{2}}{2x^{2}+40x}
Whakarohaina te 2x\left(x+20\right).
\frac{80}{x}-\frac{180x+800+x^{2}}{2x\left(x+20\right)}
Tauwehea te 2x^{2}+40x.
\frac{80\times 2\left(x+20\right)}{2x\left(x+20\right)}-\frac{180x+800+x^{2}}{2x\left(x+20\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x me 2x\left(x+20\right) ko 2x\left(x+20\right). Whakareatia \frac{80}{x} ki te \frac{2\left(x+20\right)}{2\left(x+20\right)}.
\frac{80\times 2\left(x+20\right)-\left(180x+800+x^{2}\right)}{2x\left(x+20\right)}
Tā te mea he rite te tauraro o \frac{80\times 2\left(x+20\right)}{2x\left(x+20\right)} me \frac{180x+800+x^{2}}{2x\left(x+20\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{160x+3200-180x-800-x^{2}}{2x\left(x+20\right)}
Mahia ngā whakarea i roto o 80\times 2\left(x+20\right)-\left(180x+800+x^{2}\right).
\frac{-20x+2400-x^{2}}{2x\left(x+20\right)}
Whakakotahitia ngā kupu rite i 160x+3200-180x-800-x^{2}.
\frac{-20x+2400-x^{2}}{2x^{2}+40x}
Whakarohaina te 2x\left(x+20\right).