Aromātai
\frac{21}{11275}\approx 0.001862528
Tauwehe
\frac{3 \cdot 7}{11 \cdot 41 \cdot 5 ^ {2}} = 0.0018625277161862528
Tohaina
Kua tāruatia ki te papatopenga
\frac{8.4\times 10^{13}}{10^{3}\times 4.51\times 10^{11}\times 10\times 10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 10 me te 3 kia riro ai te 13.
\frac{8.4\times 10^{13}}{10^{14}\times 4.51\times 10\times 10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 11 kia riro ai te 14.
\frac{8.4\times 10^{13}}{10^{15}\times 4.51\times 10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 14 me te 1 kia riro ai te 15.
\frac{8.4\times 10^{13}}{10^{16}\times 4.51}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 15 me te 1 kia riro ai te 16.
\frac{8.4}{4.51\times 10^{3}}
Me whakakore tahi te 10^{13} i te taurunga me te tauraro.
\frac{8.4}{4.51\times 1000}
Tātaihia te 10 mā te pū o 3, kia riro ko 1000.
\frac{8.4}{4510}
Whakareatia te 4.51 ki te 1000, ka 4510.
\frac{84}{45100}
Whakarohaina te \frac{8.4}{4510} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{21}{11275}
Whakahekea te hautanga \frac{84}{45100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}