Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{8y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}+\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y+7 me y-7 ko \left(y-7\right)\left(y+7\right). Whakareatia \frac{8y}{y+7} ki te \frac{y-7}{y-7}. Whakareatia \frac{y}{y-7} ki te \frac{y+7}{y+7}.
\frac{8y\left(y-7\right)+y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}
Tā te mea he rite te tauraro o \frac{8y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} me \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8y^{2}-56y+y^{2}+7y}{\left(y-7\right)\left(y+7\right)}
Mahia ngā whakarea i roto o 8y\left(y-7\right)+y\left(y+7\right).
\frac{9y^{2}-49y}{\left(y-7\right)\left(y+7\right)}
Whakakotahitia ngā kupu rite i 8y^{2}-56y+y^{2}+7y.
\frac{9y^{2}-49y}{y^{2}-49}
Whakarohaina te \left(y-7\right)\left(y+7\right).