Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{8^{1}x^{3}}{64^{1}x^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{8^{1}x^{3-1}}{64^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{8^{1}x^{2}}{64^{1}}
Tango 1 mai i 3.
\frac{1}{8}x^{2}
Whakahekea te hautanga \frac{8}{64} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8}{64}x^{3-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{8}x^{2})
Mahia ngā tātaitanga.
2\times \frac{1}{8}x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{1}{4}x^{1}
Mahia ngā tātaitanga.
\frac{1}{4}x
Mō tētahi kupu t, t^{1}=t.