Aromātai
\frac{3}{4}-\frac{1}{2}i=0.75-0.5i
Wāhi Tūturu
\frac{3}{4} = 0.75
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(8-i\right)\left(8-4i\right)}{\left(8+4i\right)\left(8-4i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 8-4i.
\frac{\left(8-i\right)\left(8-4i\right)}{8^{2}-4^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8-i\right)\left(8-4i\right)}{80}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4i^{2}\right)}{80}
Me whakarea ngā tau matatini 8-i me 8-4i pēnā i te whakarea huarua.
\frac{8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4\left(-1\right)\right)}{80}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{64-32i-8i-4}{80}
Mahia ngā whakarea i roto o 8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4\left(-1\right)\right).
\frac{64-4+\left(-32-8\right)i}{80}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 64-32i-8i-4.
\frac{60-40i}{80}
Mahia ngā tāpiri i roto o 64-4+\left(-32-8\right)i.
\frac{3}{4}-\frac{1}{2}i
Whakawehea te 60-40i ki te 80, kia riro ko \frac{3}{4}-\frac{1}{2}i.
Re(\frac{\left(8-i\right)\left(8-4i\right)}{\left(8+4i\right)\left(8-4i\right)})
Me whakarea te taurunga me te tauraro o \frac{8-i}{8+4i} ki te haumi hiato o te tauraro, 8-4i.
Re(\frac{\left(8-i\right)\left(8-4i\right)}{8^{2}-4^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8-i\right)\left(8-4i\right)}{80})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4i^{2}\right)}{80})
Me whakarea ngā tau matatini 8-i me 8-4i pēnā i te whakarea huarua.
Re(\frac{8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4\left(-1\right)\right)}{80})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{64-32i-8i-4}{80})
Mahia ngā whakarea i roto o 8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4\left(-1\right)\right).
Re(\frac{64-4+\left(-32-8\right)i}{80})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 64-32i-8i-4.
Re(\frac{60-40i}{80})
Mahia ngā tāpiri i roto o 64-4+\left(-32-8\right)i.
Re(\frac{3}{4}-\frac{1}{2}i)
Whakawehea te 60-40i ki te 80, kia riro ko \frac{3}{4}-\frac{1}{2}i.
\frac{3}{4}
Ko te wāhi tūturu o \frac{3}{4}-\frac{1}{2}i ko \frac{3}{4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}