\frac { 8 - 02 d t } { 1 + t } = 175 d \theta
Whakaoti mō d
d=\frac{8}{175t\theta +2t+175\theta }
\left(\theta =-\frac{2}{175}\text{ or }t\neq -\frac{175\theta }{175\theta +2}\right)\text{ and }t\neq -1
Whakaoti mō t
\left\{\begin{matrix}t=\frac{8-175d\theta }{d\left(175\theta +2\right)}\text{, }&d\neq -4\text{ and }\theta \neq -\frac{2}{175}\text{ and }d\neq 0\\t\neq -1\text{, }&\theta =-\frac{2}{175}\text{ and }d=-4\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
8-2dt=175d\theta \left(t+1\right)
Whakareatia ngā taha e rua o te whārite ki te t+1.
8-2dt=175d\theta t+175d\theta
Whakamahia te āhuatanga tohatoha hei whakarea te 175d\theta ki te t+1.
8-2dt-175d\theta t=175d\theta
Tangohia te 175d\theta t mai i ngā taha e rua.
8-2dt-175d\theta t-175d\theta =0
Tangohia te 175d\theta mai i ngā taha e rua.
-2dt-175d\theta t-175d\theta =-8
Tangohia te 8 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-2t-175\theta t-175\theta \right)d=-8
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\left(-175t\theta -2t-175\theta \right)d=-8
He hanga arowhānui tō te whārite.
\frac{\left(-175t\theta -2t-175\theta \right)d}{-175t\theta -2t-175\theta }=-\frac{8}{-175t\theta -2t-175\theta }
Whakawehea ngā taha e rua ki te -175t\theta -2t-175\theta .
d=-\frac{8}{-175t\theta -2t-175\theta }
Mā te whakawehe ki te -175t\theta -2t-175\theta ka wetekia te whakareanga ki te -175t\theta -2t-175\theta .
d=\frac{8}{175t\theta +2t+175\theta }
Whakawehe -8 ki te -175t\theta -2t-175\theta .
8-2dt=175d\theta \left(t+1\right)
Tē taea kia ōrite te tāupe t ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te t+1.
8-2dt=175d\theta t+175d\theta
Whakamahia te āhuatanga tohatoha hei whakarea te 175d\theta ki te t+1.
8-2dt-175d\theta t=175d\theta
Tangohia te 175d\theta t mai i ngā taha e rua.
-2dt-175d\theta t=175d\theta -8
Tangohia te 8 mai i ngā taha e rua.
\left(-2d-175d\theta \right)t=175d\theta -8
Pahekotia ngā kīanga tau katoa e whai ana i te t.
\left(-175d\theta -2d\right)t=175d\theta -8
He hanga arowhānui tō te whārite.
\frac{\left(-175d\theta -2d\right)t}{-175d\theta -2d}=\frac{175d\theta -8}{-175d\theta -2d}
Whakawehea ngā taha e rua ki te -2d-175\theta d.
t=\frac{175d\theta -8}{-175d\theta -2d}
Mā te whakawehe ki te -2d-175\theta d ka wetekia te whakareanga ki te -2d-175\theta d.
t=\frac{175d\theta -8}{-d\left(175\theta +2\right)}
Whakawehe 175d\theta -8 ki te -2d-175\theta d.
t=\frac{175d\theta -8}{-d\left(175\theta +2\right)}\text{, }t\neq -1
Tē taea kia ōrite te tāupe t ki -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}