Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
5\left(8\left(-\frac{61}{10}\right)-1\right)=90\left(-\frac{61}{10}\right)+300
Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 6,10.
5\left(\frac{8\left(-61\right)}{10}-1\right)=90\left(-\frac{61}{10}\right)+300
Tuhia te 8\left(-\frac{61}{10}\right) hei hautanga kotahi.
5\left(\frac{-488}{10}-1\right)=90\left(-\frac{61}{10}\right)+300
Whakareatia te 8 ki te -61, ka -488.
5\left(-\frac{244}{5}-1\right)=90\left(-\frac{61}{10}\right)+300
Whakahekea te hautanga \frac{-488}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
5\left(-\frac{244}{5}-\frac{5}{5}\right)=90\left(-\frac{61}{10}\right)+300
Me tahuri te 1 ki te hautau \frac{5}{5}.
5\times \frac{-244-5}{5}=90\left(-\frac{61}{10}\right)+300
Tā te mea he rite te tauraro o -\frac{244}{5} me \frac{5}{5}, me tango rāua mā te tango i ō raua taurunga.
5\left(-\frac{249}{5}\right)=90\left(-\frac{61}{10}\right)+300
Tangohia te 5 i te -244, ka -249.
-249=90\left(-\frac{61}{10}\right)+300
Me whakakore te 5 me te 5.
-249=\frac{90\left(-61\right)}{10}+300
Tuhia te 90\left(-\frac{61}{10}\right) hei hautanga kotahi.
-249=\frac{-5490}{10}+300
Whakareatia te 90 ki te -61, ka -5490.
-249=-549+300
Whakawehea te -5490 ki te 10, kia riro ko -549.
-249=-249
Tāpirihia te -549 ki te 300, ka -249.
\text{true}
Whakatauritea te -249 me te -249.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}