Aromātai
3
Tauwehe
3
Tohaina
Kua tāruatia ki te papatopenga
8-\frac{1\times 5+1}{5}-\frac{2\times 10+3}{10}-\frac{1\times 2+1}{2}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
8-\frac{5+1}{5}-\frac{2\times 10+3}{10}-\frac{1\times 2+1}{2}
Whakareatia te 1 ki te 5, ka 5.
8-\frac{6}{5}-\frac{2\times 10+3}{10}-\frac{1\times 2+1}{2}
Tāpirihia te 5 ki te 1, ka 6.
\frac{40}{5}-\frac{6}{5}-\frac{2\times 10+3}{10}-\frac{1\times 2+1}{2}
Me tahuri te 8 ki te hautau \frac{40}{5}.
\frac{40-6}{5}-\frac{2\times 10+3}{10}-\frac{1\times 2+1}{2}
Tā te mea he rite te tauraro o \frac{40}{5} me \frac{6}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{34}{5}-\frac{2\times 10+3}{10}-\frac{1\times 2+1}{2}
Tangohia te 6 i te 40, ka 34.
\frac{34}{5}-\frac{20+3}{10}-\frac{1\times 2+1}{2}
Whakareatia te 2 ki te 10, ka 20.
\frac{34}{5}-\frac{23}{10}-\frac{1\times 2+1}{2}
Tāpirihia te 20 ki te 3, ka 23.
\frac{68}{10}-\frac{23}{10}-\frac{1\times 2+1}{2}
Ko te maha noa iti rawa atu o 5 me 10 ko 10. Me tahuri \frac{34}{5} me \frac{23}{10} ki te hautau me te tautūnga 10.
\frac{68-23}{10}-\frac{1\times 2+1}{2}
Tā te mea he rite te tauraro o \frac{68}{10} me \frac{23}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{45}{10}-\frac{1\times 2+1}{2}
Tangohia te 23 i te 68, ka 45.
\frac{9}{2}-\frac{1\times 2+1}{2}
Whakahekea te hautanga \frac{45}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{9}{2}-\frac{2+1}{2}
Whakareatia te 1 ki te 2, ka 2.
\frac{9}{2}-\frac{3}{2}
Tāpirihia te 2 ki te 1, ka 3.
\frac{9-3}{2}
Tā te mea he rite te tauraro o \frac{9}{2} me \frac{3}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{6}{2}
Tangohia te 3 i te 9, ka 6.
3
Whakawehea te 6 ki te 2, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}