Whakaoti mō x
x=3.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(8\times 5+4\right)\times 10}{5\left(1\times 10+1\right)}=\frac{x}{0.4}
Whakawehe \frac{8\times 5+4}{5} ki te \frac{1\times 10+1}{10} mā te whakarea \frac{8\times 5+4}{5} ki te tau huripoki o \frac{1\times 10+1}{10}.
\frac{2\left(4+5\times 8\right)}{1+10}=\frac{x}{0.4}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{2\left(4+40\right)}{1+10}=\frac{x}{0.4}
Whakareatia te 5 ki te 8, ka 40.
\frac{2\times 44}{1+10}=\frac{x}{0.4}
Tāpirihia te 4 ki te 40, ka 44.
\frac{88}{1+10}=\frac{x}{0.4}
Whakareatia te 2 ki te 44, ka 88.
\frac{88}{11}=\frac{x}{0.4}
Tāpirihia te 1 ki te 10, ka 11.
8=\frac{x}{0.4}
Whakawehea te 88 ki te 11, kia riro ko 8.
\frac{x}{0.4}=8
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=8\times 0.4
Me whakarea ngā taha e rua ki te 0.4.
x=3.2
Whakareatia te 8 ki te 0.4, ka 3.2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}