Aromātai
\frac{2}{3}+\frac{2}{3}i\approx 0.666666667+0.666666667i
Wāhi Tūturu
\frac{2}{3} = 0.6666666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(8+4i\right)\left(9+3i\right)}{\left(9-3i\right)\left(9+3i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 9+3i.
\frac{\left(8+4i\right)\left(9+3i\right)}{9^{2}-3^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+4i\right)\left(9+3i\right)}{90}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3i^{2}}{90}
Me whakarea ngā tau matatini 8+4i me 9+3i pēnā i te whakarea huarua.
\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right)}{90}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{72+24i+36i-12}{90}
Mahia ngā whakarea i roto o 8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right).
\frac{72-12+\left(24+36\right)i}{90}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 72+24i+36i-12.
\frac{60+60i}{90}
Mahia ngā tāpiri i roto o 72-12+\left(24+36\right)i.
\frac{2}{3}+\frac{2}{3}i
Whakawehea te 60+60i ki te 90, kia riro ko \frac{2}{3}+\frac{2}{3}i.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{\left(9-3i\right)\left(9+3i\right)})
Me whakarea te taurunga me te tauraro o \frac{8+4i}{9-3i} ki te haumi hiato o te tauraro, 9+3i.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{9^{2}-3^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{90})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3i^{2}}{90})
Me whakarea ngā tau matatini 8+4i me 9+3i pēnā i te whakarea huarua.
Re(\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right)}{90})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{72+24i+36i-12}{90})
Mahia ngā whakarea i roto o 8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right).
Re(\frac{72-12+\left(24+36\right)i}{90})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 72+24i+36i-12.
Re(\frac{60+60i}{90})
Mahia ngā tāpiri i roto o 72-12+\left(24+36\right)i.
Re(\frac{2}{3}+\frac{2}{3}i)
Whakawehea te 60+60i ki te 90, kia riro ko \frac{2}{3}+\frac{2}{3}i.
\frac{2}{3}
Ko te wāhi tūturu o \frac{2}{3}+\frac{2}{3}i ko \frac{2}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}