Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{12-2\sqrt{5}-4\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}}
Tāpirihia te 8 ki te 4, ka 12.
\frac{12-6\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}}
Pahekotia te -2\sqrt{5} me -4\sqrt{5}, ka -6\sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{12-6\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 1+\sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{1-5}
Pūrua 1. Pūrua \sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{-4}
Tangohia te 5 i te 1, ka -4.
\frac{12+12\sqrt{5}-6\sqrt{5}-6\left(\sqrt{5}\right)^{2}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 12-6\sqrt{5}+2\sqrt{10} ki ia tau o 1+\sqrt{5}.
\frac{12+6\sqrt{5}-6\left(\sqrt{5}\right)^{2}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Pahekotia te 12\sqrt{5} me -6\sqrt{5}, ka 6\sqrt{5}.
\frac{12+6\sqrt{5}-6\times 5+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Ko te pūrua o \sqrt{5} ko 5.
\frac{12+6\sqrt{5}-30+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Whakareatia te -6 ki te 5, ka -30.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Tangohia te 30 i te 12, ka -18.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\sqrt{5}\sqrt{2}\sqrt{5}}{-4}
Tauwehea te 10=5\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5\times 2} hei hua o ngā pūtake rua \sqrt{5}\sqrt{2}.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\times 5\sqrt{2}}{-4}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
\frac{-18+6\sqrt{5}+2\sqrt{10}+10\sqrt{2}}{-4}
Whakareatia te 2 ki te 5, ka 10.