Aromātai
\frac{9-\sqrt{10}-3\sqrt{5}-5\sqrt{2}}{2}\approx -3.970774702
Tauwehe
\frac{9 - \sqrt{10} - 3 \sqrt{5} - 5 \sqrt{2}}{2} = -3.9707747022666124
Tohaina
Kua tāruatia ki te papatopenga
\frac{12-2\sqrt{5}-4\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}}
Tāpirihia te 8 ki te 4, ka 12.
\frac{12-6\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}}
Pahekotia te -2\sqrt{5} me -4\sqrt{5}, ka -6\sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{12-6\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 1+\sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{1-5}
Pūrua 1. Pūrua \sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{-4}
Tangohia te 5 i te 1, ka -4.
\frac{12+12\sqrt{5}-6\sqrt{5}-6\left(\sqrt{5}\right)^{2}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 12-6\sqrt{5}+2\sqrt{10} ki ia tau o 1+\sqrt{5}.
\frac{12+6\sqrt{5}-6\left(\sqrt{5}\right)^{2}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Pahekotia te 12\sqrt{5} me -6\sqrt{5}, ka 6\sqrt{5}.
\frac{12+6\sqrt{5}-6\times 5+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Ko te pūrua o \sqrt{5} ko 5.
\frac{12+6\sqrt{5}-30+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Whakareatia te -6 ki te 5, ka -30.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Tangohia te 30 i te 12, ka -18.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\sqrt{5}\sqrt{2}\sqrt{5}}{-4}
Tauwehea te 10=5\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5\times 2} hei hua o ngā pūtake rua \sqrt{5}\sqrt{2}.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\times 5\sqrt{2}}{-4}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
\frac{-18+6\sqrt{5}+2\sqrt{10}+10\sqrt{2}}{-4}
Whakareatia te 2 ki te 5, ka 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}