Whakaoti mō T
T=-\frac{ht-77t-60h+4347}{76-h}
t\neq -213\text{ and }h\neq 77\text{ and }h\neq 76
Whakaoti mō h
h=-\frac{4347+76T-77t}{t-T-60}
t\neq T+60\text{ and }t\neq -213\text{ and }T\neq -273
Tohaina
Kua tāruatia ki te papatopenga
\left(T+273\right)\left(76-h\right)=\left(t+213\right)\left(77-h\right)
Tē taea kia ōrite te tāupe T ki -273 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(T+273\right)\left(t+213\right), arā, te tauraro pātahi he tino iti rawa te kitea o t+213,T+273.
76T-Th+20748-273h=\left(t+213\right)\left(77-h\right)
Whakamahia te āhuatanga tohatoha hei whakarea te T+273 ki te 76-h.
76T-Th+20748-273h=77t-th+16401-213h
Whakamahia te āhuatanga tohatoha hei whakarea te t+213 ki te 77-h.
76T-Th-273h=77t-th+16401-213h-20748
Tangohia te 20748 mai i ngā taha e rua.
76T-Th-273h=77t-th-4347-213h
Tangohia te 20748 i te 16401, ka -4347.
76T-Th=77t-th-4347-213h+273h
Me tāpiri te 273h ki ngā taha e rua.
76T-Th=77t-th-4347+60h
Pahekotia te -213h me 273h, ka 60h.
\left(76-h\right)T=77t-th-4347+60h
Pahekotia ngā kīanga tau katoa e whai ana i te T.
\left(76-h\right)T=-ht+77t+60h-4347
He hanga arowhānui tō te whārite.
\frac{\left(76-h\right)T}{76-h}=\frac{-ht+77t+60h-4347}{76-h}
Whakawehea ngā taha e rua ki te 76-h.
T=\frac{-ht+77t+60h-4347}{76-h}
Mā te whakawehe ki te 76-h ka wetekia te whakareanga ki te 76-h.
T=\frac{-ht+77t+60h-4347}{76-h}\text{, }T\neq -273
Tē taea kia ōrite te tāupe T ki -273.
\left(T+273\right)\left(76-h\right)=\left(t+213\right)\left(77-h\right)
Me whakarea ngā taha e rua o te whārite ki te \left(T+273\right)\left(t+213\right), arā, te tauraro pātahi he tino iti rawa te kitea o t+213,T+273.
76T-Th+20748-273h=\left(t+213\right)\left(77-h\right)
Whakamahia te āhuatanga tohatoha hei whakarea te T+273 ki te 76-h.
76T-Th+20748-273h=77t-th+16401-213h
Whakamahia te āhuatanga tohatoha hei whakarea te t+213 ki te 77-h.
76T-Th+20748-273h+th=77t+16401-213h
Me tāpiri te th ki ngā taha e rua.
76T-Th+20748-273h+th+213h=77t+16401
Me tāpiri te 213h ki ngā taha e rua.
76T-Th+20748-60h+th=77t+16401
Pahekotia te -273h me 213h, ka -60h.
-Th+20748-60h+th=77t+16401-76T
Tangohia te 76T mai i ngā taha e rua.
-Th-60h+th=77t+16401-76T-20748
Tangohia te 20748 mai i ngā taha e rua.
-Th-60h+th=77t-4347-76T
Tangohia te 20748 i te 16401, ka -4347.
\left(-T-60+t\right)h=77t-4347-76T
Pahekotia ngā kīanga tau katoa e whai ana i te h.
\left(t-T-60\right)h=77t-76T-4347
He hanga arowhānui tō te whārite.
\frac{\left(t-T-60\right)h}{t-T-60}=\frac{77t-76T-4347}{t-T-60}
Whakawehea ngā taha e rua ki te t-T-60.
h=\frac{77t-76T-4347}{t-T-60}
Mā te whakawehe ki te t-T-60 ka wetekia te whakareanga ki te t-T-60.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}