Whakaoti mō x
x = -\frac{15}{2} = -7\frac{1}{2} = -7.5
x = \frac{15}{2} = 7\frac{1}{2} = 7.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\times 75=2x\times 2x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6x, arā, te tauraro pātahi he tino iti rawa te kitea o 2x,3.
3\times 75=\left(2x\right)^{2}
Whakareatia te 2x ki te 2x, ka \left(2x\right)^{2}.
225=\left(2x\right)^{2}
Whakareatia te 3 ki te 75, ka 225.
225=2^{2}x^{2}
Whakarohaina te \left(2x\right)^{2}.
225=4x^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}=225
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{225}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{15}{2} x=-\frac{15}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3\times 75=2x\times 2x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6x, arā, te tauraro pātahi he tino iti rawa te kitea o 2x,3.
3\times 75=\left(2x\right)^{2}
Whakareatia te 2x ki te 2x, ka \left(2x\right)^{2}.
225=\left(2x\right)^{2}
Whakareatia te 3 ki te 75, ka 225.
225=2^{2}x^{2}
Whakarohaina te \left(2x\right)^{2}.
225=4x^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}=225
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x^{2}-225=0
Tangohia te 225 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-225\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me -225 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-225\right)}}{2\times 4}
Pūrua 0.
x=\frac{0±\sqrt{-16\left(-225\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{0±\sqrt{3600}}{2\times 4}
Whakareatia -16 ki te -225.
x=\frac{0±60}{2\times 4}
Tuhia te pūtakerua o te 3600.
x=\frac{0±60}{8}
Whakareatia 2 ki te 4.
x=\frac{15}{2}
Nā, me whakaoti te whārite x=\frac{0±60}{8} ina he tāpiri te ±. Whakahekea te hautanga \frac{60}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{15}{2}
Nā, me whakaoti te whārite x=\frac{0±60}{8} ina he tango te ±. Whakahekea te hautanga \frac{-60}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{15}{2} x=-\frac{15}{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}