Aromātai
-\frac{3}{4}=-0.75
Tauwehe
-\frac{3}{4} = -0.75
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(74-26\right)\left(-5\right)}{25\times 48}\times \frac{15}{4}
Whakawehe \frac{74-26}{25} ki te \frac{48}{-5} mā te whakarea \frac{74-26}{25} ki te tau huripoki o \frac{48}{-5}.
\frac{-\left(74-26\right)}{5\times 48}\times \frac{15}{4}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{-48}{5\times 48}\times \frac{15}{4}
Tangohia te 26 i te 74, ka 48.
\frac{-48}{240}\times \frac{15}{4}
Whakareatia te 5 ki te 48, ka 240.
-\frac{1}{5}\times \frac{15}{4}
Whakahekea te hautanga \frac{-48}{240} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 48.
\frac{-15}{5\times 4}
Me whakarea te -\frac{1}{5} ki te \frac{15}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-15}{20}
Mahia ngā whakarea i roto i te hautanga \frac{-15}{5\times 4}.
-\frac{3}{4}
Whakahekea te hautanga \frac{-15}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}