Whakaoti mō n
n = -\frac{23}{6} = -3\frac{5}{6} \approx -3.833333333
Tohaina
Kua tāruatia ki te papatopenga
73=-12n+9\left(1\times 2+1\right)
Me whakarea ngā taha e rua o te whārite ki te 18, arā, te tauraro pātahi he tino iti rawa te kitea o 18,3,2.
73=-12n+9\left(2+1\right)
Whakareatia te 1 ki te 2, ka 2.
73=-12n+9\times 3
Tāpirihia te 2 ki te 1, ka 3.
73=-12n+27
Whakareatia te 9 ki te 3, ka 27.
-12n+27=73
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-12n=73-27
Tangohia te 27 mai i ngā taha e rua.
-12n=46
Tangohia te 27 i te 73, ka 46.
n=\frac{46}{-12}
Whakawehea ngā taha e rua ki te -12.
n=-\frac{23}{6}
Whakahekea te hautanga \frac{46}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}