Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+10\right)\times 72-x\times 72=36x\left(x+10\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -10,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+10.
72x+720-x\times 72=36x\left(x+10\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+10 ki te 72.
72x+720-x\times 72=36x^{2}+360x
Whakamahia te āhuatanga tohatoha hei whakarea te 36x ki te x+10.
72x+720-x\times 72-36x^{2}=360x
Tangohia te 36x^{2} mai i ngā taha e rua.
72x+720-x\times 72-36x^{2}-360x=0
Tangohia te 360x mai i ngā taha e rua.
-288x+720-x\times 72-36x^{2}=0
Pahekotia te 72x me -360x, ka -288x.
-288x+720-72x-36x^{2}=0
Whakareatia te -1 ki te 72, ka -72.
-360x+720-36x^{2}=0
Pahekotia te -288x me -72x, ka -360x.
-36x^{2}-360x+720=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-360\right)±\sqrt{\left(-360\right)^{2}-4\left(-36\right)\times 720}}{2\left(-36\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -36 mō a, -360 mō b, me 720 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-360\right)±\sqrt{129600-4\left(-36\right)\times 720}}{2\left(-36\right)}
Pūrua -360.
x=\frac{-\left(-360\right)±\sqrt{129600+144\times 720}}{2\left(-36\right)}
Whakareatia -4 ki te -36.
x=\frac{-\left(-360\right)±\sqrt{129600+103680}}{2\left(-36\right)}
Whakareatia 144 ki te 720.
x=\frac{-\left(-360\right)±\sqrt{233280}}{2\left(-36\right)}
Tāpiri 129600 ki te 103680.
x=\frac{-\left(-360\right)±216\sqrt{5}}{2\left(-36\right)}
Tuhia te pūtakerua o te 233280.
x=\frac{360±216\sqrt{5}}{2\left(-36\right)}
Ko te tauaro o -360 ko 360.
x=\frac{360±216\sqrt{5}}{-72}
Whakareatia 2 ki te -36.
x=\frac{216\sqrt{5}+360}{-72}
Nā, me whakaoti te whārite x=\frac{360±216\sqrt{5}}{-72} ina he tāpiri te ±. Tāpiri 360 ki te 216\sqrt{5}.
x=-3\sqrt{5}-5
Whakawehe 360+216\sqrt{5} ki te -72.
x=\frac{360-216\sqrt{5}}{-72}
Nā, me whakaoti te whārite x=\frac{360±216\sqrt{5}}{-72} ina he tango te ±. Tango 216\sqrt{5} mai i 360.
x=3\sqrt{5}-5
Whakawehe 360-216\sqrt{5} ki te -72.
x=-3\sqrt{5}-5 x=3\sqrt{5}-5
Kua oti te whārite te whakatau.
\left(x+10\right)\times 72-x\times 72=36x\left(x+10\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -10,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+10.
72x+720-x\times 72=36x\left(x+10\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+10 ki te 72.
72x+720-x\times 72=36x^{2}+360x
Whakamahia te āhuatanga tohatoha hei whakarea te 36x ki te x+10.
72x+720-x\times 72-36x^{2}=360x
Tangohia te 36x^{2} mai i ngā taha e rua.
72x+720-x\times 72-36x^{2}-360x=0
Tangohia te 360x mai i ngā taha e rua.
-288x+720-x\times 72-36x^{2}=0
Pahekotia te 72x me -360x, ka -288x.
-288x-x\times 72-36x^{2}=-720
Tangohia te 720 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-288x-72x-36x^{2}=-720
Whakareatia te -1 ki te 72, ka -72.
-360x-36x^{2}=-720
Pahekotia te -288x me -72x, ka -360x.
-36x^{2}-360x=-720
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-36x^{2}-360x}{-36}=-\frac{720}{-36}
Whakawehea ngā taha e rua ki te -36.
x^{2}+\left(-\frac{360}{-36}\right)x=-\frac{720}{-36}
Mā te whakawehe ki te -36 ka wetekia te whakareanga ki te -36.
x^{2}+10x=-\frac{720}{-36}
Whakawehe -360 ki te -36.
x^{2}+10x=20
Whakawehe -720 ki te -36.
x^{2}+10x+5^{2}=20+5^{2}
Whakawehea te 10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 5. Nā, tāpiria te pūrua o te 5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+10x+25=20+25
Pūrua 5.
x^{2}+10x+25=45
Tāpiri 20 ki te 25.
\left(x+5\right)^{2}=45
Tauwehea x^{2}+10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{45}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5=3\sqrt{5} x+5=-3\sqrt{5}
Whakarūnātia.
x=3\sqrt{5}-5 x=-3\sqrt{5}-5
Me tango 5 mai i ngā taha e rua o te whārite.