Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(4x+60\right)\times 7.5=4x\times 7.5+4x\left(x+15\right)\times \frac{1}{4}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -15,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x\left(x+15\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+15,4.
30x+450=4x\times 7.5+4x\left(x+15\right)\times \frac{1}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te 4x+60 ki te 7.5.
30x+450=30x+4x\left(x+15\right)\times \frac{1}{4}
Whakareatia te 4 ki te 7.5, ka 30.
30x+450=30x+x\left(x+15\right)
Whakareatia te 4 ki te \frac{1}{4}, ka 1.
30x+450=30x+x^{2}+15x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+15.
30x+450=45x+x^{2}
Pahekotia te 30x me 15x, ka 45x.
30x+450-45x=x^{2}
Tangohia te 45x mai i ngā taha e rua.
-15x+450=x^{2}
Pahekotia te 30x me -45x, ka -15x.
-15x+450-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}-15x+450=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-15 ab=-450=-450
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+450. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-450 2,-225 3,-150 5,-90 6,-75 9,-50 10,-45 15,-30 18,-25
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -450.
1-450=-449 2-225=-223 3-150=-147 5-90=-85 6-75=-69 9-50=-41 10-45=-35 15-30=-15 18-25=-7
Tātaihia te tapeke mō ia takirua.
a=15 b=-30
Ko te otinga te takirua ka hoatu i te tapeke -15.
\left(-x^{2}+15x\right)+\left(-30x+450\right)
Tuhia anō te -x^{2}-15x+450 hei \left(-x^{2}+15x\right)+\left(-30x+450\right).
x\left(-x+15\right)+30\left(-x+15\right)
Tauwehea te x i te tuatahi me te 30 i te rōpū tuarua.
\left(-x+15\right)\left(x+30\right)
Whakatauwehea atu te kīanga pātahi -x+15 mā te whakamahi i te āhuatanga tātai tohatoha.
x=15 x=-30
Hei kimi otinga whārite, me whakaoti te -x+15=0 me te x+30=0.
\left(4x+60\right)\times 7.5=4x\times 7.5+4x\left(x+15\right)\times \frac{1}{4}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -15,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x\left(x+15\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+15,4.
30x+450=4x\times 7.5+4x\left(x+15\right)\times \frac{1}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te 4x+60 ki te 7.5.
30x+450=30x+4x\left(x+15\right)\times \frac{1}{4}
Whakareatia te 4 ki te 7.5, ka 30.
30x+450=30x+x\left(x+15\right)
Whakareatia te 4 ki te \frac{1}{4}, ka 1.
30x+450=30x+x^{2}+15x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+15.
30x+450=45x+x^{2}
Pahekotia te 30x me 15x, ka 45x.
30x+450-45x=x^{2}
Tangohia te 45x mai i ngā taha e rua.
-15x+450=x^{2}
Pahekotia te 30x me -45x, ka -15x.
-15x+450-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}-15x+450=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-1\right)\times 450}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -15 mō b, me 450 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-1\right)\times 450}}{2\left(-1\right)}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225+4\times 450}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-15\right)±\sqrt{225+1800}}{2\left(-1\right)}
Whakareatia 4 ki te 450.
x=\frac{-\left(-15\right)±\sqrt{2025}}{2\left(-1\right)}
Tāpiri 225 ki te 1800.
x=\frac{-\left(-15\right)±45}{2\left(-1\right)}
Tuhia te pūtakerua o te 2025.
x=\frac{15±45}{2\left(-1\right)}
Ko te tauaro o -15 ko 15.
x=\frac{15±45}{-2}
Whakareatia 2 ki te -1.
x=\frac{60}{-2}
Nā, me whakaoti te whārite x=\frac{15±45}{-2} ina he tāpiri te ±. Tāpiri 15 ki te 45.
x=-30
Whakawehe 60 ki te -2.
x=-\frac{30}{-2}
Nā, me whakaoti te whārite x=\frac{15±45}{-2} ina he tango te ±. Tango 45 mai i 15.
x=15
Whakawehe -30 ki te -2.
x=-30 x=15
Kua oti te whārite te whakatau.
\left(4x+60\right)\times 7.5=4x\times 7.5+4x\left(x+15\right)\times \frac{1}{4}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -15,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x\left(x+15\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+15,4.
30x+450=4x\times 7.5+4x\left(x+15\right)\times \frac{1}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te 4x+60 ki te 7.5.
30x+450=30x+4x\left(x+15\right)\times \frac{1}{4}
Whakareatia te 4 ki te 7.5, ka 30.
30x+450=30x+x\left(x+15\right)
Whakareatia te 4 ki te \frac{1}{4}, ka 1.
30x+450=30x+x^{2}+15x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+15.
30x+450=45x+x^{2}
Pahekotia te 30x me 15x, ka 45x.
30x+450-45x=x^{2}
Tangohia te 45x mai i ngā taha e rua.
-15x+450=x^{2}
Pahekotia te 30x me -45x, ka -15x.
-15x+450-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-15x-x^{2}=-450
Tangohia te 450 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}-15x=-450
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-15x}{-1}=-\frac{450}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{15}{-1}\right)x=-\frac{450}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+15x=-\frac{450}{-1}
Whakawehe -15 ki te -1.
x^{2}+15x=450
Whakawehe -450 ki te -1.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=450+\left(\frac{15}{2}\right)^{2}
Whakawehea te 15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{2}. Nā, tāpiria te pūrua o te \frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+15x+\frac{225}{4}=450+\frac{225}{4}
Pūruatia \frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+15x+\frac{225}{4}=\frac{2025}{4}
Tāpiri 450 ki te \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{2025}{4}
Tauwehea x^{2}+15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{2025}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{15}{2}=\frac{45}{2} x+\frac{15}{2}=-\frac{45}{2}
Whakarūnātia.
x=15 x=-30
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.