Whakaoti mō x
x=\frac{5}{259}\approx 0.019305019
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{7x}{0.024}+\frac{-1}{0.024}=\frac{1-0.2x}{0.018}-\frac{5x+1}{0.012}
Whakawehea ia wā o 7x-1 ki te 0.024, kia riro ko \frac{7x}{0.024}+\frac{-1}{0.024}.
\frac{875}{3}x+\frac{-1}{0.024}=\frac{1-0.2x}{0.018}-\frac{5x+1}{0.012}
Whakawehea te 7x ki te 0.024, kia riro ko \frac{875}{3}x.
\frac{875}{3}x+\frac{-1000}{24}=\frac{1-0.2x}{0.018}-\frac{5x+1}{0.012}
Whakarohaina te \frac{-1}{0.024} mā te whakarea i te taurunga me te tauraro ki te 1000.
\frac{875}{3}x-\frac{125}{3}=\frac{1-0.2x}{0.018}-\frac{5x+1}{0.012}
Whakahekea te hautanga \frac{-1000}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{875}{3}x-\frac{125}{3}=\frac{1}{0.018}+\frac{-0.2x}{0.018}-\frac{5x+1}{0.012}
Whakawehea ia wā o 1-0.2x ki te 0.018, kia riro ko \frac{1}{0.018}+\frac{-0.2x}{0.018}.
\frac{875}{3}x-\frac{125}{3}=\frac{1000}{18}+\frac{-0.2x}{0.018}-\frac{5x+1}{0.012}
Whakarohaina te \frac{1}{0.018} mā te whakarea i te taurunga me te tauraro ki te 1000.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}+\frac{-0.2x}{0.018}-\frac{5x+1}{0.012}
Whakahekea te hautanga \frac{1000}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\frac{5x+1}{0.012}
Whakawehea te -0.2x ki te 0.018, kia riro ko -\frac{100}{9}x.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\left(\frac{5x}{0.012}+\frac{1}{0.012}\right)
Whakawehea ia wā o 5x+1 ki te 0.012, kia riro ko \frac{5x}{0.012}+\frac{1}{0.012}.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\left(\frac{1250}{3}x+\frac{1}{0.012}\right)
Whakawehea te 5x ki te 0.012, kia riro ko \frac{1250}{3}x.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\left(\frac{1250}{3}x+\frac{1000}{12}\right)
Whakarohaina te \frac{1}{0.012} mā te whakarea i te taurunga me te tauraro ki te 1000.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\left(\frac{1250}{3}x+\frac{250}{3}\right)
Whakahekea te hautanga \frac{1000}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\frac{1250}{3}x-\frac{250}{3}
Hei kimi i te tauaro o \frac{1250}{3}x+\frac{250}{3}, kimihia te tauaro o ia taurangi.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{3850}{9}x-\frac{250}{3}
Pahekotia te -\frac{100}{9}x me -\frac{1250}{3}x, ka -\frac{3850}{9}x.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{3850}{9}x-\frac{750}{9}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{500}{9} me \frac{250}{3} ki te hautau me te tautūnga 9.
\frac{875}{3}x-\frac{125}{3}=\frac{500-750}{9}-\frac{3850}{9}x
Tā te mea he rite te tauraro o \frac{500}{9} me \frac{750}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{875}{3}x-\frac{125}{3}=-\frac{250}{9}-\frac{3850}{9}x
Tangohia te 750 i te 500, ka -250.
\frac{875}{3}x-\frac{125}{3}+\frac{3850}{9}x=-\frac{250}{9}
Me tāpiri te \frac{3850}{9}x ki ngā taha e rua.
\frac{6475}{9}x-\frac{125}{3}=-\frac{250}{9}
Pahekotia te \frac{875}{3}x me \frac{3850}{9}x, ka \frac{6475}{9}x.
\frac{6475}{9}x=-\frac{250}{9}+\frac{125}{3}
Me tāpiri te \frac{125}{3} ki ngā taha e rua.
\frac{6475}{9}x=-\frac{250}{9}+\frac{375}{9}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri -\frac{250}{9} me \frac{125}{3} ki te hautau me te tautūnga 9.
\frac{6475}{9}x=\frac{-250+375}{9}
Tā te mea he rite te tauraro o -\frac{250}{9} me \frac{375}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6475}{9}x=\frac{125}{9}
Tāpirihia te -250 ki te 375, ka 125.
x=\frac{\frac{125}{9}}{\frac{6475}{9}}
Whakawehea ngā taha e rua ki te \frac{6475}{9}.
x=\frac{125}{9\times \frac{6475}{9}}
Tuhia te \frac{\frac{125}{9}}{\frac{6475}{9}} hei hautanga kotahi.
x=\frac{125}{6475}
Whakareatia te 9 ki te \frac{6475}{9}, ka 6475.
x=\frac{5}{259}
Whakahekea te hautanga \frac{125}{6475} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}