Aromātai
\frac{19x}{44y}
Whakaroha
\frac{19x}{44y}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3\times 7x}{3}-\frac{2x}{3}}{15y-\frac{y}{3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 7x ki te \frac{3}{3}.
\frac{\frac{3\times 7x-2x}{3}}{15y-\frac{y}{3}}
Tā te mea he rite te tauraro o \frac{3\times 7x}{3} me \frac{2x}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{21x-2x}{3}}{15y-\frac{y}{3}}
Mahia ngā whakarea i roto o 3\times 7x-2x.
\frac{\frac{19x}{3}}{15y-\frac{y}{3}}
Whakakotahitia ngā kupu rite i 21x-2x.
\frac{\frac{19x}{3}}{\frac{44}{3}y}
Pahekotia te 15y me -\frac{y}{3}, ka \frac{44}{3}y.
\frac{19x}{3\times \frac{44}{3}y}
Tuhia te \frac{\frac{19x}{3}}{\frac{44}{3}y} hei hautanga kotahi.
\frac{19x}{44y}
Me whakakore te 3 me te 3.
\frac{\frac{3\times 7x}{3}-\frac{2x}{3}}{15y-\frac{y}{3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 7x ki te \frac{3}{3}.
\frac{\frac{3\times 7x-2x}{3}}{15y-\frac{y}{3}}
Tā te mea he rite te tauraro o \frac{3\times 7x}{3} me \frac{2x}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{21x-2x}{3}}{15y-\frac{y}{3}}
Mahia ngā whakarea i roto o 3\times 7x-2x.
\frac{\frac{19x}{3}}{15y-\frac{y}{3}}
Whakakotahitia ngā kupu rite i 21x-2x.
\frac{\frac{19x}{3}}{\frac{44}{3}y}
Pahekotia te 15y me -\frac{y}{3}, ka \frac{44}{3}y.
\frac{19x}{3\times \frac{44}{3}y}
Tuhia te \frac{\frac{19x}{3}}{\frac{44}{3}y} hei hautanga kotahi.
\frac{19x}{44y}
Me whakakore te 3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}