Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(7v^{2}\right)^{1}\times \frac{1}{42v^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
7^{1}\left(v^{2}\right)^{1}\times \frac{1}{42}\times \frac{1}{v^{3}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
7^{1}\times \frac{1}{42}\left(v^{2}\right)^{1}\times \frac{1}{v^{3}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
7^{1}\times \frac{1}{42}v^{2}v^{3\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
7^{1}\times \frac{1}{42}v^{2}v^{-3}
Whakareatia 3 ki te -1.
7^{1}\times \frac{1}{42}v^{2-3}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
7^{1}\times \frac{1}{42}\times \frac{1}{v}
Tāpirihia ngā taupū 2 me -3.
7\times \frac{1}{42}\times \frac{1}{v}
Hīkina te 7 ki te pū 1.
\frac{1}{6}\times \frac{1}{v}
Whakareatia 7 ki te \frac{1}{42}.
\frac{7^{1}v^{2}}{42^{1}v^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{7^{1}v^{2-3}}{42^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{7^{1}\times \frac{1}{v}}{42^{1}}
Tango 3 mai i 2.
\frac{1}{6}\times \frac{1}{v}
Whakahekea te hautanga \frac{7}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{7}{42}v^{2-3})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{1}{6}\times \frac{1}{v})
Mahia ngā tātaitanga.
-\frac{1}{6}v^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-\frac{1}{6}v^{-2}
Mahia ngā tātaitanga.